
Post-Audit Fix Report

Author: Nico Elzer

Commit: https://github.com/nicoelzer/gnosis-protocol-relayer/commit/
319d6ff3ece08e2b854f0d7b0a8a0fe12893ba79

Critical Defects 

Moderate Defects 

Minor Defects

Defect Status

2.1 Incorrect Order ID in Cancellation ✅ Addressed

Defect Status

3.1 Suboptimal Order Execution due to Known Issues Not addressed due to general
known issue with Gnosis
Protocol, not specific to this
relayer.

3.2 Desired Token Output Ignored ✅ Addressed

3.3 Possible Integer Truncation (1) ✅ Addressed

3.4 Incorrect Bounds Checks ✅ Addressed

Defect Status

4.1 Late State Change ✅ Addressed

4.2 Unnecessary Payable Modifier ✅ Addressed

4.3 Possible Integer Truncation (2) ✅ Addressed

4.4 Redundant Bounds Check ✅ Addressed

DXswap Gnosis Oracle Audit No. 1

Dec, 2020

Contents

1 Introduction 2
1.1 Scope of Work . 2
1.2 Source Files . 2
1.3 License and Disclaimer of Warranty 2

2 Critical Defects 4
2.1 Incorrect Order ID in Cancellation 4

3 Moderate Defects 5
3.1 Suboptimal Order Execution due to Known Issues 5
3.2 Desired Token Output Ignored . 5
3.3 Possible Integer Truncation (1) . 5
3.4 Incorrect Bounds Checks . 6

4 Minor Defects 7
4.1 Late State Change . 7
4.2 Unnecessary Payable Modifier . 7
4.3 Possible Integer Truncation (2) . 7
4.4 Redundant Bounds Check . 8

5 Other Notes 9

1

Chapter 1

Introduction

1.1 Scope of Work
This code review was prepared by Sunfish Technology, LLC at the request of members
of dxDAO, an organization governed by a smart contract on the Ethereum blockchain.
The code covered by this review (see section 1.2) is functionality designed to allow
dxDAO to trade DAO-managed tokens on a decentralized exchanged called Gnosis.

1.2 Source Files
This audit covers code from the public Github repository https://github.com/
nicoelzer/gnosis-protocol-relayer.

Only code from the following git SHA was reviewed:

0517a2c05d05797c30832fba75603339b7262e11

Within that revision, only the following files received line-by-line review:

• contracts/GnosisProtocolRelayer.sol

This review was conducted under the optimistic assumption that all of the support-
ing software infrastructure necessary for the deployment and operation of the reviewed
code works as intended. There may be critical defects in code outside of the scope of
this review that could render deployed smart contracts inoperable or exploitable.

1.3 License and Disclaimer of Warranty
This source code review is not an endorsement of the code or its suitability for any
legal/regulatory regime, and it is not intended as a definitive or exhaustive list of de-
fects. This document is provided expressly for the benefit of dxDAO developers and
only under the following terms:

2

https://github.com/nicoelzer/gnosis-protocol-relayer
https://github.com/nicoelzer/gnosis-protocol-relayer

THIS REVIEW IS PROVIDED BY SUNFISH TECHNOLOGY, LLC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
SUNFISH TECHNOLOGY, LLC. OR ITS OWNERS OR EMPLOYEES BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS REPORT OR REVIEWED SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

3

Chapter 2

Critical Defects

Issues discussed in this section are defects that lead to the code to misbehave in ways
that are directly exploitable and have severe consequences like loss of funds.

2.1 Incorrect Order ID in Cancellation
The code on line 170 trhough 172 of GnosisProtocolRelayer.sol uses the wrong
ID for IBatchExchange.cancelOrders():

uint16[] memory orderArray = new uint16[](1);
orderArray[0] = uint16(orderIndex);
IBatchExchange(batchExchange).cancelOrders(orderArray);

The code ought to use order.gpOrderId instead of orderIndex. This code
works by coincidence when all orders are successfully placed with IBatchExchange.placeOrder(),
since order IDs are implemented as indices in an array, much like orderIndex in the
calling contract. However, this code will stop working once an order in GnosisPro-
tocolRelayer expires without being placed, as orderCount will increase, but the
number of orders in the BatchExchange contract will not.

4

Chapter 3

Moderate Defects

Issues discussed in this section are code defects that may lead to unintended deviations
in behavior. It may be possible to chain multiple moderate defects into a working
exploit.

3.1 Suboptimal Order Execution due to Known Issues
The Gnosis Protocol exchange has a number of known issues that impact the reliability
of order execution.

The "Fake-token utility" issue described in the Gnosis API docs are of particular
concern for this use-case, as it allows an attacker to force orders to receive worst-case
execution costs. In practice this means an attacker can force every trade executed as
a result of placeTrade() to only yield expectedAmountMin tokens, rather than a
result closer to expectedAmount.

See https://docs.gnosis.io/protocol/docs/devguide03/#known-issues.

3.2 Desired Token Output Ignored
The tokenOutAmount field of the Order structure is unused by placeTrade(), even
though it is stored into each Order by orderTrade().

Either placeTrade() is computing expectedAmountMin incorrectly by not com-
puting the output amount as a delta from tokenAmountOut rather than expectedAmount,
or the functionality is vestigal and should be removed entirely.

(It seems as if placeTrade() should at least check that expectedAmountMin is
within priceTolerane of tokenAmountOut.)

3.3 Possible Integer Truncation (1)
On line 158 of GnosisProtocolRelayer.sol, the expression uint128(expectedAmountMin)
can yield unexpected results when the value of expectedAmountMin cannot be repre-

5

https://docs.gnosis.io/protocol/docs/devguide03/#known-issues

sented with 128 bits or fewer. Consider explicitly discarding values above 2**128.

3.4 Incorrect Bounds Checks
Lines 132, 165, 167, 178, and 207 all use the following incorrect bounds check:

require(orderIndex <= orderCount, ...);

An orderCount of 1 implies that the only valid orderIndex value is zero. The
correct bounds check is:

require(orderIndex < orderCount, ...);

6

Chapter 4

Minor Defects

Issues discussed in this section are subjective code defects that affect readability, relia-
bility, or performance.

4.1 Late State Change
The placeTrade() function uses order.executed to ensure that trades are placed
exactly once. However, the check for !order.executed on line 133 and the assign-
ment of order.executed = true on line 157 occur very far apart; there are many ex-
ternal calls made between those two lines of code. Consider placing order.executed
= true before any external calls in order to make it clear that you have avoided any
possibility of a re-entrancy exploit. (In general, it is best to have internal state changes
happen before external calls, if possible.)

4.2 Unnecessary Payable Modifier
The GnosisProtocolRelayer.withdrawExpiredOrder() function is declared as
payable, despite it not using any provided Ether. The payable modifier can likely be
removed from this function.

4.3 Possible Integer Truncation (2)
On line 156 of GnosisProtocolRelayer.sol, the expression uint32(order.deadline/BATCH_TIME)
can yield unexpected results due to unchecked integer truncation. If the result of the
expression order.deadline/BATCH_TIME is greater than 0xffffffff, the results of
the truncation will be zero.

Since order deadlines large enough to trigger this condition ought not to happen in
practice, it may make sense to have orderTrade() reject unreasonably long durations.

7

4.4 Redundant Bounds Check
Lines 165 and 167 of GnosisProtocolRelayer.sol are identical; they perform the
same (incorrect) bounds check. One of the two checks should be removed, and the
other should be fixed (see section 3.4).

8

Chapter 5

Other Notes

A significant source of complexity in GnosisProtocolRelayer is due to the fact that
it needs to consult Uniswapv2 as a price oracle across multiple transactions before it
places a trade. It may be simpler to have orderTrade() place a limit order directly,
provided that the governance inolved in calling orderTrade() does not require an
unreasonably long voting period. The benefit of consulting an additional price oracle
before placing a limit order is simply that the limit order will be placed closer to the
current market-clearing price, rather than the price at the time the governance proposal
is made. It may be simpler to speed up governance proposals rather than requiring that
trades sit around long enough to obvserve stable price conditions.

9

	1 Introduction
	1.1 Scope of Work
	1.2 Source Files
	1.3 License and Disclaimer of Warranty

	2 Critical Defects
	2.1 Incorrect Order ID in Cancellation

	3 Moderate Defects
	3.1 Suboptimal Order Execution due to Known Issues
	3.2 Desired Token Output Ignored
	3.3 Possible Integer Truncation (1)
	3.4 Incorrect Bounds Checks

	4 Minor Defects
	4.1 Late State Change
	4.2 Unnecessary Payable Modifier
	4.3 Possible Integer Truncation (2)
	4.4 Redundant Bounds Check

	5 Other Notes

