Splashdown

For other uses, see Splashdown (disambiguation).
Locations of Atlantic Ocean splashdowns of American spacecraft.
Locations of Pacific Ocean splashdowns of American spacecraft.

Splashdown is the method of landing a spacecraft by parachute in a body of water. It was used by American manned spacecraft prior to the Space Shuttle program, and is planned for use by the upcoming Orion Multipurpose Crew Vehicle. It is also possible for the Russian Soyuz spacecraft to land in water, though this is only a contingency. The only example of an unintentional manned splashdown in Soviet history is the Soyuz 23 landing.

As the name suggests, the capsule parachutes into an ocean or other large body of water. The properties of water cushion the spacecraft enough that there is no need for a braking rocket to slow the final descent as was the case with Russian and Chinese manned space capsules, which returned to Earth over land. The American practice came in part because American launch sites are on the coastline and launch primarily over water. Russian launch sites are far inland and most early launch aborts were likely to descend on land.

Missions

The splashdown method of landing was utilized for Mercury, Gemini and Apollo (including Skylab, which used Apollo capsules). On one occasion a Soviet spacecraft, Soyuz 23, punched through the ice of a frozen lake (nearly killing the cosmonauts), and this was unintentional.[1]

On early Mercury flights, a helicopter attached a cable to the capsule, lifted it from the water and delivered it to a nearby ship. This was changed after the sinking of Liberty Bell 7. All later Mercury, Gemini and Apollo capsules had a flotation collar (similar to a rubber life raft) attached to the spacecraft to increase their buoyancy. The spacecraft would then be brought alongside a ship and lifted onto deck by crane.

After the flotation collar is attached, a hatch on the spacecraft is usually opened. At that time, some astronauts decide to be hoisted aboard a helicopter for a ride to the recovery ship and some decided to stay with the spacecraft and be lifted aboard ship via crane. (Because of his overshoot aboard Aurora 7, and mindful of the fate of Liberty Bell 7, Scott Carpenter alone egressed through the nose of his capsule instead of through the hatch, waiting for recovery forces in his life raft.) All Gemini and Apollo flights (Apollos 7 to 17) used the former, while Mercury missions from Mercury 6 to Mercury 9, as well as all Skylab missions and Apollo-Soyuz used the latter, especially the Skylab flights as to preserve all medical data. During the Gemini and Apollo programs, NASA used MV Retriever for the astronauts to practice water egress.

Apollo 11 was America's first moon landing mission and marked the first time that humans walked on the surface of another planetary body. The possibility of the astronauts bringing "moon germs" back to Earth was remote, but not impossible. To contain any possible contaminates at the scene of the splashdown, the astronauts donned special Biological Isolation Garments and the outside of the suits were scrubbed prior to the astronauts being hoisted aboard USS Hornet and escorted safely inside a Mobile Quarantine Facility.[2]

The early design concept for the new U.S. Orion Crew Exploration Vehicle featured recovery on land using a combination of parachutes and airbags, although it was also designed to make a contingency splashdown (only for an in-flight abort) if needed. Due to weight considerations, the airbag design concept was dropped. The present design concept features landings via splashdown in the Pacific Ocean off the coast of California.[3]

Disadvantages

The most dangerous aspect is the possibility of the spacecraft flooding and sinking. For example, when the hatch of Gus Grissom's Mercury-Redstone 4 capsule blew prematurely, the capsule sank and Grissom almost drowned.

Despite the fact that water helps cushion the spacecraft's landing to an extent, the impact can still be quite violent for the astronauts.

If the capsule comes down far from any recovery forces the crew are exposed to greater danger. As an example, Scott Carpenter in Mercury 7 overshot the assigned landing zone by 400 kilometers (250 mi). These recovery operation mishaps can be mitigated by placing several vessels on standby in several different locations, but this is quite an expensive option.

Locations

Manned spacecraft

# Spacecraft Landing Date Coordinates Recovery Ship Miss Distance (kilometres) Refs
1 Freedom 7 May 5, 1961 27°13.7′N 75°53′W / 27.2283°N 75.883°W / 27.2283; -75.883 (Freedom 7) USS Lake Champlain (CVS-39) 5.6 [4]
2 Liberty Bell 7 July 21, 1961 27°32′N 75°44′W / 27.533°N 75.733°W / 27.533; -75.733 (Liberty Bell 7) USS Randolph (CVS-15) 9.3 [5]
3 Friendship 7 February 20, 1962 21°26′N 68°41′W / 21.433°N 68.683°W / 21.433; -68.683 (Friendship 7) USS Noa (DD-841)
(USS Randolph (CVS-15)**)
74 [6]
4 Aurora 7 May 24, 1962 19°27′N 63°59′W / 19.450°N 63.983°W / 19.450; -63.983 (Aurora 7) USS Pierce DD-753
(USS Intrepid (CVS-11)**)
400 [7]
5 Sigma 7 October 3, 1962 32°06′N 174°28′W / 32.100°N 174.467°W / 32.100; -174.467 (Sigma 7) USS Kearsarge (CVS-33) 7.4 [8]
6 Faith 7 May 16, 1963 27°20′N 176°26′W / 27.333°N 176.433°W / 27.333; -176.433 (Faith 7) USS Kearsarge (CVS-33) 8.1 [9]
7 Gemini 3 March 23, 1965 22°26′N 70°51′W / 22.433°N 70.850°W / 22.433; -70.850 (Gemini 3) USS Intrepid (CVS-11) 111 [10]
8 Gemini 4 June 7, 1965 27°44′N 74°11′W / 27.733°N 74.183°W / 27.733; -74.183 (Gemini 4) USS Wasp (CVS-18) 81 [11]
9 Gemini 5 August 29, 1965 29°44′N 69°45′W / 29.733°N 69.750°W / 29.733; -69.750 (Gemini 5) USS Lake Champlain (CVS 39) 270 [12]
10 Gemini 7 December 18, 1965 25°25′N 70°07′W / 25.417°N 70.117°W / 25.417; -70.117 (Gemini 7) USS Wasp (CVS-18) 12 [13]
11 Gemini 6A December 16, 1965 23°35′N 67°50′W / 23.583°N 67.833°W / 23.583; -67.833 (Gemini 6A) USS Wasp (CVS-18) 13 [14]
12 Gemini 8 March 17, 1966 25°14′N 136°0′E / 25.233°N 136.000°E / 25.233; 136.000 (Gemini 8) USS Leonard F. Mason (DD-852)
(USS Boxer (LPH-4)**)
2 [15]
13 Gemini 9A June 6, 1966 27°52′N 75°0′W / 27.867°N 75.000°W / 27.867; -75.000 (Gemini 9A) USS Wasp (CVS-18) 0.7 [16]
14 Gemini 10 July 21, 1966 26°45′N 71°57′W / 26.750°N 71.950°W / 26.750; -71.950 (Gemini 10) USS Guadalcanal (LPH-7) 6 [17]
15 Gemini 11 September 15, 1966 24°15′N 70°0′W / 24.250°N 70.000°W / 24.250; -70.000 (Gemini 11) USS Guam (LPH-9) 5 [18]
16 Gemini 12 November 15, 1966 24°35′N 69°57′W / 24.583°N 69.950°W / 24.583; -69.950 (Gemini 12) USS Wasp (CVS-18) 5 [19]
17 Apollo 7 October 22, 1968 27°32′N 64°04′W / 27.533°N 64.067°W / 27.533; -64.067 (Apollo 7) USS Essex (CVS-9) 3 [20]
18 Apollo 8 December 27, 1968 8°7.5′N 165°1.2′W / 8.1250°N 165.0200°W / 8.1250; -165.0200 (Apollo 8) USS Yorktown (CVS-10) 2 [21]
19 Apollo 9 March 13, 1969 23°15′N 67°56′W / 23.250°N 67.933°W / 23.250; -67.933 (Apollo 9) USS Guadalcanal (LPH-7) 5 [22][23]
20 Apollo 10 May 26, 1969 15°2′S 164°39′W / 15.033°S 164.650°W / -15.033; -164.650 (Apollo 10) USS Princeton (LPH-5) 2.4 [24][25]
21 Apollo 11 July 24, 1969 13°19′N 169°9′W / 13.317°N 169.150°W / 13.317; -169.150 (Apollo 11) USS Hornet (CVS-12) 3.13 [26][27]
22 Apollo 12 November 24, 1969 15°47′S 165°9′W / 15.783°S 165.150°W / -15.783; -165.150 (Apollo 12) USS Hornet (CVS-12) 3.7 [28][29]
23 Apollo 13 April 17, 1970 21°38′S 165°22′W / 21.633°S 165.367°W / -21.633; -165.367 (Apollo 13) USS Iwo Jima (LPH-2) 1.85 [30][31]
24 Apollo 14 February 9, 1971 27°1′S 172°39′W / 27.017°S 172.650°W / -27.017; -172.650 (Apollo 14) USS New Orleans (LPH-11) 1.1 [32][33]
25 Apollo 15 August 7, 1971 26°7′N 158°8′W / 26.117°N 158.133°W / 26.117; -158.133 (Apollo 15) USS Okinawa (LPH-3) 1.85 [34][35]
26 Apollo 16 April 27, 1972 0°43′S 156°13′W / 0.717°S 156.217°W / -0.717; -156.217 (Apollo 16) USS Ticonderoga (CVS-14) 0.55 [36][37]
27 Apollo 17 December 19, 1972 17°53′S 166°7′W / 17.883°S 166.117°W / -17.883; -166.117 (Apollo 17) USS Ticonderoga (CVS-14) 1.85 [38][39]
28 Skylab 2 June 22, 1973 24°45′N 127°2′W / 24.750°N 127.033°W / 24.750; -127.033 (Skylab 2) USS Ticonderoga (CVS-14) [40]
29 Skylab 3 September 25, 1973 30°47′N 120°29′W / 30.783°N 120.483°W / 30.783; -120.483 (Skylab 3) USS New Orleans (LPH-11) [41]
30 Skylab 4 February 8, 1974 31°18′N 119°48′W / 31.300°N 119.800°W / 31.300; -119.800 (Skylab 4) USS New Orleans (LPH-11) [42]
31 ASTP Apollo July 24, 1975 22°N 163°W / 22°N 163°W / 22; -163 (ASTP Apollo) USS New Orleans (LPH-11) 1.3 [43][44]
Soyuz 23 October 16, 1976 Lake Tengiz Helicopter Mi-8 [45]

Planned recovery ship **

Unmanned spacecraft

Spacecraft Agency Landing Date Coordinates Recovery Ship Miss Distance
Jupiter AM-18 USAF May 28, 1959 48 to 96 km N Antigua Is USS Kiowa (ATF-72) 16 km[46]
Mercury-Big Joe NASA September 9, 1959 2,407 km SE Cape Canaveral USS Strong (DD-758) 925 km[47]
Mercury-Little Joe 2 NASA December 4, 1959 319 km SE Wallops Is, VA USS Borie (DD-704) ? km[48]
Mercury-Redstone 1A NASA December 19, 1960 378.2 km SE Cape Canaveral USS Valley Forge (CV-45) 12.9 km[49]
Mercury-Redstone 2 NASA January 31, 1961 675.9 km SE Cape Canaveral USS Donner (LSD-20)[50] 209.2 km[51]
Mercury-Atlas 2 NASA February 21, 1961 2293.3 km SE Cape Canaveral USS Donner (LSD-20)[50] 20.9 km[52]
Discoverer 25 USAF June 16, 1961 ? US recovery ship mid-air recovery missed
Mercury-Atlas 4 NASA September 13, 1961 257.5 km E of Bermuda USS Decatur (DD-936) 64.4 km[53]
Mercury-Atlas 5 NASA November 29, 1961 804.7 km SE of Bermuda USS Stormes (DD-780) ? km[54]
Gemini 2 NASA January 19, 1965 16°33.9′N 49°46.27′W / 16.5650°N 49.77117°W / 16.5650; -49.77117 (Gemini 2) 3423.1 km downrange from KSC USS Lake Champlain (CVS-39) 38.6 km[55]
Apollo 201 NASA February 26, 1966 8°11′S 11°09′W / 8.18°S 11.15°W / -8.18; -11.15 (Apollo 201) 8,472 km downrange from KSC USS Boxer (LPH-4) ? km[56]
Apollo 202 NASA August 25, 1966 16°07′N 168°54′E / 16.12°N 168.9°E / 16.12; 168.9 (Apollo 202) 804.7 km southwest of Wake Island USS Hornet (CVS-12) ? km[57]
Gemini 2-MOL USAF November 3, 1966 8,149.7 km SE KSC near Ascension Is. USS La Salle (LPD-3) 11.26 km[58]
Apollo 4 NASA November 9, 1967 30°06′N 172°32′W / 30.1°N 172.53°W / 30.1; -172.53 (Apollo 4) USS Bennington (CVS-20) 16 km[59]
Apollo 6 NASA April 4, 1968 27°40′N 157°59′W / 27.667°N 157.983°W / 27.667; -157.983 (Apollo 6) USS Okinawa (LPH-3) ? km[60]
Zond 5 USSR September 21, 1968 32°38′S 65°33′E / 32.63°S 65.55°E / -32.63; 65.55 (Zond 5) USSR recovery naval vessel Borovichy and Vasiliy Golovin 105 km[61][62]
Zond 8 USSR October 27, 1970 730 km SE of the Chagos Archipelago, Indian Ocean USSR recovery ship Taman 24 km[63][64]
Cosmos 1374 USSR June 4, 1982 17°S 98°E / 17°S 98°E / -17; 98 (Cosmos 1374) 560 km S of Cocos Islands, Indian Ocean USSR recovery ship ? km
Cosmos 1445 USSR March 15, 1983 556 km S of Cocos Islands, Indian Ocean USSR recovery ship ? km
Cosmos 1517 USSR December 27, 1983 near Crimea, Black Sea USSR recovery ship ? km
Cosmos 1614 USSR December 19, 1984 ? km W of the Crimea, Black Sea USSR recovery ship ? km
COTS Demo Flight 1 SpaceX December 8, 2010 800 km west of Baja California, Mexico, Pacific Ocean ? 0.8 km[65]
Dragon C2+ SpaceX May 31, 2012 26°55′N 120°42′W / 26.92°N 120.7°W / 26.92; -120.7 (Dragon C2+) ? ?[66]
CRS SpX-1 SpaceX October 28, 2012 ? American Islander[67] ?[68]
CRS SpX-2 SpaceX March 27, 2013 ? American Islander ?[69]
Exploration Flight Test 1 NASA December 5, 2014 23°36′N 116°24′W / 23.6°N 116.4°W / 23.6; -116.4 (EFT-1), 275 miles west of Baja California USS Anchorage (LPD-23)

See also

References

  1. "Soyuz-23, Lands On A Frozen Lake". VideoCosmos. Retrieved 2012-06-21.
  2. http://www.uss-hornet.org/history/apollo/ | USS Hornet Museum's website, "Apollo 11 & 12 Recovery" written by Bob Fish (author of Hornet Plus Three)
  3. "Solar System Exploration: News & Events: News Archive: NASA Announces Key Decision For Next Deep Space Transportation System". Solarsystem.nasa.gov. 2011-05-24. Retrieved 2012-06-21.
  4. "Mercury-Redstone 3 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 143, Table 2-30, Landing Point, (NASA SP-4012)
  5. "Mercury-Redstone 4 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 144, Table 2-31, Landing Point, (NASA SP-4012)
  6. "Mercury-Atlas 6 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 145, Table 2-32, Landing Point, (NASA SP-4012)
  7. "Mercury-Atlas 7 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 146, Table 2-33, Landing Point, (NASA SP-4012)
  8. "Mercury-Atlas 8 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 147, Table 2-34, Landing Point, (NASA SP-4012)
  9. "Mercury-Atlas 9 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 148, Table 2-35, Landing Point, (NASA SP-4012)
  10. "Gemini 3 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 159, Table 2-39, Landing Point, (NASA SP-4012)
  11. "Gemini 4 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 160, Table 2-40, Landing Point, (NASA SP-4012)
  12. "Gemini 5 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 161, Table 2-41, Landing Point, (NASA SP-4012)
  13. "Gemini 7 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 162, Table 2-42, Landing Point, (NASA SP-4012)
  14. "Gemini 6A Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 163, Table 2-43, Landing Point, (NASA SP-4012)
  15. "Gemini 8 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 164, Table 2-44, Landing Point, (NASA SP-4012)
  16. "Gemini 9A Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 165, Table 2-45, Landing Point, (NASA SP-4012)
  17. "Gemini 10 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 166, Table 2-46, Landing Point, (NASA SP-4012)
  18. "Gemini 11 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 167, Table 2-47, Landing Point, (NASA SP-4012)
  19. "Gemini 12 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 168, Table 2-48, Landing Point, (NASA SP-4012)
  20. "Apollo 7 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 188, Table 2-52, Landing Point, (NASA SP-4012)
  21. "Apollo 8 Landing Point", NASA Historical Data Book, Volume II, Programs and Projects 1958-1968; Pg 189, Table 2-53, Landing Point, (NASA SP-4012)
  22. "Apollo 9 Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 83, Table 2-37, Earth Landing coordinates, (NASA SP-4012)
  23. "Apollo 9 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 58, Recovery, (NASA SP-2000-4029)
  24. "Apollo 10 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 84, Table 2-38, Earth Landing coordinates, (NASA SP-4012)
  25. "Apollo 10 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 78, Recovery, (NASA SP-2000-4029)
  26. "Apollo 11 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 85, Table 2-39, Earth Landing coordinates, (NASA SP-4012)
  27. "Apollo 11 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 98, Recovery, (NASA SP-2000-4029)
  28. "Apollo 12 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 86, Table 2-40, Earth Landing coordinates, (NASA SP-4012)
  29. "Apollo 12 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 120, Recovery, (NASA SP-2000-4029)
  30. "Apollo 13 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 87, Table 2-41, Earth Landing coordinates, (NASA SP-4012)
  31. "Apollo 13 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 143, Recovery, (NASA SP-2000-4029)
  32. "Apollo 14 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 88, Table 2-42, Earth Landing coordinates, (NASA SP-4012)
  33. "Apollo 14 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 168, Recovery, (NASA SP-2000-4029)
  34. "Apollo 15 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 89, Table 2-43, Earth Landing coordinates, (NASA SP-4012)
  35. "Apollo 15 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 197, Recovery, (NASA SP-2000-4029)
  36. "Apollo 16 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 91, Table 2-44, Earth Landing coordinates, (NASA SP-4012)
  37. "Apollo 16 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 225, Recovery, (NASA SP-2000-4029)
  38. "Apollo 17 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 92, Table 2-45, Earth Landing coordinates, (NASA SP-4012)
  39. "Apollo 17 Miss Distance", Apollo By The Numbers - A Statistical Reference by Richard W. Orloff; Pg 251, Recovery, (NASA SP-2000-4029)
  40. "Skylab 2 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 104, Table 2-49, Earth Landing coordinates, (NASA SP-4012)
  41. "Skylab 3 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 105, Table 2-50, Earth Landing coordinates, (NASA SP-4012)
  42. "Skylab 4 Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 105, Table 2-51, Earth Landing coordinates, (NASA SP-4012)
  43. "ASTP Apollo Earth Landing Point", NASA Historical Data Book, Volume III, Programs and Projects 1969-1978; Pg 112, Table 2-54, Earth Landing coordinates, (NASA SP-4012)
  44. "ASTP Apollo Miss Distance", ASTP Summary Science Report - Mission Description; Pg 36, Apollo Deorbit and Landing,
  45. "Cosmonauts Land in Lake, Blizzard", Milwaukee Journal newspaper, Oct 18, 1976
  46. "Animals Survive 1,500-Mile Ride In Rocket Nose", Windsor, ON Canada - Daily Star newspaper May 28, 1959
  47. "Big Joe Shot", This New Ocean:A History of Project Mercury,Chapter 7, (NASA SP-4201)
  48. "Monkey Completes Long Flight Aloft", Ellensburg, WA - Daily Record newspaper, Dec 4, 1959
  49. "Man-In-Space Capsule To Be Closely Studied", Florence, Alabama - Times newspaper, Dec 20, 1960
  50. 1 2 "USS Donner LSD20". Homestead.com. Retrieved 2012-06-21.
  51. "Chimp Survives Space Shot", Milwaukee Sentinel newspaper, Feb 1, 1961
  52. "Space Capsule Soars 107 Miles High", Florence, Alabama - Times newspaper, Feb 21, 1961
  53. "U.S. Orbited, Returned", Meriden, CT - Journal newspaper, Sep 13, 1961
  54. "Capsule Trouble Forces Early Landing Of Craft", Toledo, Ohio - Blade newspaper, Nov 29, 1961
  55. "Gemini 2 Distance traveled, Landing Point, Miss Distance", Manned Space Flight Network Performance Analysis for the GT-2 Mission; Pg V - Distance traveled, Page 21 - Landing Point, Miss Distance, (NASA X-552-65-204)
  56. "Apollo 202 Distance traveled, Landing Point", NASA.com - Apollo-Saturn Unmanned Missions - Mission AS-201
  57. "Apollo 202 Distance traveled, Landing Point", NASA.com - Apollo-Saturn Unmanned Missions - Mission AS-202
  58. "Titan 3 Gives Spectacular Space Show", Sarasota, FL - Journal newspaper Nov 3, 1966
  59. "Apollo 4 Landing Point", NASA.com - Apollo-Saturn Unmanned Missions - Mission Apollo 4
  60. "Apollo 6 Landing Point", NASA.com - Apollo-Saturn Unmanned Missions - Mission Apollo 6
  61. "Zond 5, Recovery Ship, Miss Distance", Red Moon By Michael Cassutt - page 320, Recovery Ship and Miss Distance.
  62. "Zond 5, Landing Point, Miss Distance", NASA Solar System Exploration - Zond 5, Landing Point, Miss Distance.
  63. "Zond 8, Recovery Ship, Miss Distance", Soviet and Russian lunar exploration By Brian Harvey - page 218, Recovery Ship and Miss Distance.
  64. "Zond 8, Landing Point", NASA Solar System Exploration - Zond 8, Splashdown area.
  65. "COTS 1 (SpaceX Dragon 1), Splashdown area", http://www.spacex.com/press.php?page=20101208, Splashdown area.
  66. "History is made as Dragon splashes down safely in the Pacific! | Bad Astronomy | Discover Magazine". Blogs.discovermagazine.com. Retrieved 2012-06-21.
  67. "Dragon Returns to Earth". NASA. 2012-10-28. Retrieved 2012-10-29.
  68. "SpaceX brings home Dragon with 2,700 pounds of cargo". Spaceflightnow. 2013-03-26. Retrieved 2013-03-27.
This article is issued from Wikipedia - version of the 11/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.