Algal bloom

Taken in October 2011, the worst algae bloom that Lake Erie has experienced in decades. Record torrential spring rains washed fertilizer into the lake, promoting the growth of microcystin producing cyanobacteria blooms.[1]

An algal bloom is a rapid increase or accumulation in the population of algae in freshwater or marine water systems, and are recognized by the discoloration in the water from their pigments.[2] Cyanobacteria blooms are often called blue-green algae. Blooms which can injure animals or the ecology are called "harmful algal blooms" (HAB), and can lead to fish die-offs, cities cutting off water to residents, or states having to close fisheries.

Blooming

Algal blooms can present problems for ecosystems and human society.

Since 'algae' is a broad term including organisms of widely varying sizes, growth rates and nutrient requirements, there is no officially recognized threshold level as to what is defined as a bloom. For some species, algae can be considered to be blooming at concentrations reaching millions of cells per milliliter, while others form blooms of tens of thousands of cells per liter. The photosynthetic pigments in the algal cells determine the color of the algal bloom, and are thus often a greenish color, but they can also be a wide variety of other colors such as yellow, brown or red, depending on the species of algae and the type of pigments contained therein.

Bright green blooms in freshwater systems are frequently a result of cyanobacteria (colloquially known as blue-green algae) such as Microcystis. Blooms may also consist of macroalgal (non-phytoplanktonic) species. These blooms are recognizable by large blades of algae that may wash up onto the shoreline.

Of particular note are harmful algal blooms (HABs), which are algal bloom events involving toxic or otherwise harmful phytoplankton such as dinoflagellates of the genus Alexandrium and Karenia, or diatoms of the genus Pseudo-nitzschia. Such blooms often take on a red or brown hue and are known colloquially as red tides.

Freshwater algal blooms

Further information: Nutrient pollution and Eutrophication

Freshwater algal blooms are the result of an excess of nutrients, particularly some phosphates.[3][4] The excess of nutrients may originate from fertilizers that are applied to land for agricultural or recreational purposes. They may also originate from household cleaning products containing phosphorus.[5] These nutrients can then enter watersheds through water runoff.[6] Excess carbon and nitrogen have also been suspected as causes. Presence of residual sodium carbonate acts as catalyst for the algae to bloom by providing dissolved carbon dioxide for enhanced photosynthesis in the presence of nutrients.

When phosphates are introduced into water systems, higher concentrations cause increased growth of algae and plants. Algae tend to grow very quickly under high nutrient availability, but each alga is short-lived, and the result is a high concentration of dead organic matter which starts to decay. The decay process consumes dissolved oxygen in the water, resulting in hypoxic conditions. Without sufficient dissolved oxygen in the water, animals and plants may die off in large numbers. Use of an Olszewski tube can help combat these problems with hypolimnetic withdrawal.

Blooms may be observed in freshwater aquariums when fish are overfed and excess nutrients are not absorbed by plants. These are generally harmful for fish, and the situation can be corrected by changing the water in the tank and then reducing the amount of food given.

Harmful algal blooms

Main article: Harmful algal blooms
An algae bloom off the southern coast of Devon and Cornwall in England, in 1999
Satellite image of phytoplankton swirling around the Swedish island of Gotland in the Baltic Sea, in 2005

A harmful algal bloom (HAB) is an algal bloom that causes negative impacts to other organisms via production of natural toxins, mechanical damage to other organisms, or by other means. HABs are often associated with large-scale marine mortality events and have been associated with various types of shellfish poisonings.[7]

In studies at the population level bloom coverage has been significantly related to the risk of non-alcoholic liver disease death.[8]

Background

In the marine environment, single-celled, microscopic, plant-like organisms naturally occur in the well-lit surface layer of any body of water. These organisms, referred to as phytoplankton or microalgae, form the base of the food web upon which nearly all other marine organisms depend. Of the 5000+ species of marine phytoplankton that exist worldwide, about 2% are known to be harmful or toxic.[9] Blooms of harmful algae can have large and varied impacts on marine ecosystems, depending on the species involved, the environment where they are found, and the mechanism by which they exert negative effects.

Harmful algal blooms have been observed to cause adverse effects to a wide variety of aquatic organisms, most notably marine mammals, sea turtles, seabirds and finfish. The impacts of HAB toxins on these groups can include harmful changes to their developmental, immunological, neurological, or reproductive capacities. The most conspicuous effects of HABs on marine wildlife are large-scale mortality events associated with toxin-producing blooms. For example, a mass mortality event of 107 bottlenose dolphins occurred along the Florida panhandle in the spring of 2004 due to ingestion of contaminated menhaden with high levels of brevetoxin.[10] Manatee mortalities have also been attributed to brevetoxin but unlike dolphins, the main toxin vector was endemic seagrass species (Thalassia testudinum) in which high concentrations of brevetoxins were detected and subsequently found as a main component of the stomach contents of manatees.[10]

Additional marine mammal species, like the highly endangered North Atlantic Right Whale, have been exposed to neurotoxins by preying on highly contaminated zooplankton.[11] With the summertime habitat of this species overlapping with seasonal blooms of the toxic dinoflagellate Alexandrium fundyense, and subsequent copepod grazing, foraging right whales will ingest large concentrations of these contaminated copepods. Ingestion of such contaminated prey can affect respiratory capabilities, feeding behavior, and ultimately the reproductive condition of the population.[11]

Immune system responses have been affected by brevetoxin exposure in another critically endangered species, the Loggerhead sea turtle. Brevetoxin exposure, via inhalation of aerosolized toxins and ingestion of contaminated prey, can have clinical signs of increased lethargy and muscle weakness in loggerhead sea turtles causing these animals to wash ashore in a decreased metabolic state with increases of immune system responses upon blood analysis.[12] Examples of common harmful effects of HABs include:

  1. the production of neurotoxins which cause mass mortalities in fish, seabirds, sea turtles, and marine mammals
  2. human illness or death via consumption of seafood contaminated by toxic algae[13]
  3. mechanical damage to other organisms, such as disruption of epithelial gill tissues in fish, resulting in asphyxiation
  4. oxygen depletion of the water column (hypoxia or anoxia) from cellular respiration and bacterial degradation

Due to their negative economic and health impacts, HABs are often carefully monitored.[14][15]

HABs occur in many regions of the world, and in the United States are recurring phenomena in multiple geographical regions. The Gulf of Maine frequently experiences blooms of the dinoflagellate Alexandrium fundyense, an organism that produces saxitoxin, the neurotoxin responsible for paralytic shellfish poisoning. The well-known "Florida red tide" that occurs in the Gulf of Mexico is a HAB caused by Karenia brevis, another dinoflagellate which produces brevetoxin, the neurotoxin responsible for neurotoxic shellfish poisoning. California coastal waters also experience seasonal blooms of Pseudo-nitzschia, a diatom known to produce domoic acid, the neurotoxin responsible for amnesic shellfish poisoning. Off the west coast of South Africa, HABs caused by Alexandrium catanella occur every spring. These blooms of organisms cause severe disruptions in fisheries of these waters as the toxins in the phytoplankton cause filter-feeding shellfish in affected waters to become poisonous for human consumption.[16]

If the HAB event results in a high enough concentration of algae the water may become discoloured or murky, varying in colour from purple to almost pink, normally being red or green. Not all algal blooms are dense enough to cause water discolouration.

Red tides

A red tide

Red tide is a term often used synonymously with HABs in marine coastal areas, however the term is misleading since algal blooms can be a wide variety of colors and growth of algae is unrelated to the tides. The term 'algal bloom' or 'harmful algal bloom' has since replaced 'red tide' as the appropriate description of this phenomenon.

Causes of HABs

It is unclear what causes HABs; their occurrence in some locations appears to be entirely natural,[17] while in others they appear to be a result of human activities.[18] Furthermore, there are many different species of algae that can form HABs, each with different environmental requirements for optimal growth. The frequency and severity of HABs in some parts of the world have been linked to increased nutrient loading from human activities. In other areas, HABs are a predictable seasonal occurrence resulting from coastal upwelling, a natural result of the movement of certain ocean currents.[19] The growth of marine phytoplankton (both non-toxic and toxic) is generally limited by the availability of nitrates and phosphates, which can be abundant in coastal upwelling zones as well as in agricultural run-off. The type of nitrates and phosphates available in the system are also a factor, since phytoplankton can grow at different rates depending on the relative abundance of these substances (e.g. ammonia, urea, nitrate ion). A variety of other nutrient sources can also play an important role in affecting algal bloom formation, including iron, silica or carbon. Coastal water pollution produced by humans (including iron fertilization) and systematic increase in sea water temperature have also been suggested as possible contributing factors in HABs.[20] Other factors such as iron-rich dust influx from large desert areas such as the Sahara are thought to play a role in causing HABs.[21] Some algal blooms on the Pacific coast have also been linked to natural occurrences of large-scale climatic oscillations such as El Niño events. While HABs in the Gulf of Mexico have been occurring since the time of early explorers such as Cabeza de Vaca,[22] it is unclear what initiates these blooms and how large a role anthropogenic and natural factors play in their development. It is also unclear whether the apparent increase in frequency and severity of HABs in various parts of the world is in fact a real increase or is due to increased observation effort and advances in species identification technology.[23][24] However recent research found that the warming of summer surface temperatures of lakes, which rose by 0.34 °C decade per decade between 1985 and 2009 due to global warming, also will likely increase algal blooming by 20% over the next century.[25]

Researching solutions

The decline of filter-feeding shellfish populations, such as oysters, likely contribute to HAB occurrence.[26] As such, numerous research projects are assessing the potential of restored shellfish populations to reduce HAB occurrence.[27][28][29]

Since many Algal blooms are caused by a major influx of nutrient-rich runoff into a water body, programs to treat wastewater, reduce the overuse of fertilizers in agriculture and reducing the bulk flow of runoff can be effective for reducing severe algal blooms at river mouths, estuaries, and the ocean directly in front of the river's mouth.

Notable occurrences

Red, orange, yellow and green represent areas where algal blooms abound. Blue patches represent nutrient-poor zones where blooms exist in low numbers.
The US Coast Guard Cutter Healy ferried scientists to 26 study sites in the Arctic, where blooms ranged in concentration from high (red) to low (purple).
Researcher David Mayer of Clark University lowers a video camera below the ice to observe a dense bloom of phytoplankton.

See also

References

  1. Joanna M. Foster (November 20, 2013). "Lake Erie Is Dying Again, And Warmer Waters And Wetter Weather Are To Blame". ClimateProgress.
  2. Ferris, Robert (July 26, 2016). "Why are there so many toxic algae blooms this year". CNBC. Retrieved July 27, 2016.
  3. Diersling, Nancy. "Phytoplankton Blooms: The Basics" (PDF). NOAA FKNMS. Retrieved 26 December 2012.
  4. Hochanadel, Dave (10 December 2010). "Limited amount of total phosphorus actually feeds algae, study finds". Lake Scientist. Retrieved 10 June 2012. [B]ioavailable phosphorus – phosphorus that can be utilized by plants and bacteria – is only a fraction of the total, according to Michael Brett, a UW engineering professor ...
  5. Gilbert, P. A.; Dejong, A. L. (1977). "The use of phosphate in detergents and possible replacements for phosphate". Ciba Foundation symposium (57): 253–268. PMID 249679.
  6. Lathrop, Richard C.; Stephen R. Carpenter; John C. Panuska; Patricia A. Soranno; Craig A. Stow (1 May 1998). "Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota" (PDF). Canadian Journal of Fisheries and Aquatic Sciences. Toronto, Ontario, Canada: National Research Council of Canada. 55 (5): 1169–1178. doi:10.1139/cjfas-55-5-1169. Retrieved 13 April 2008.
  7. "Harmful Algal Blooms: Red Tide: Home". www.cdc.gov. Archived from the original on 27 August 2009. Retrieved 2009-08-23.
  8. Feng Zhang; Jiyoung Lee; Song Liang; CK Shum (2015). "Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States". Environ Health.14: 41. Retrieved 13 June 2016.
  9. Landsberg, J. H. (2002). "The effects of harmful algal blooms on aquatic organisms". Reviews in Fisheries Science. 10 (2): 113–390. doi:10.1080/20026491051695.
  10. 1 2 Flewelling, L. J.; et al. (2005). "Red tides and marine mammal mortalities". Nature. 435 (7043): 755–756. Bibcode:2005Natur.435..755F. doi:10.1038/nature435755a. PMC 2659475Freely accessible. PMID 15944690.
  11. 1 2 Durbin E et al (2002) North Atlantic right whale, Eubalaena glacialis, exposed to paralytic shellfish poisoning (PSP) toxins via a zooplankton vector, Calanus finmarchicus. Harmful Algae I, : 243-251 (2002)
  12. Walsh, C. J.; et al. (2010). "Effects of brevetoxin exposure on the immune system of loggerhead sea turtles". Aquatic Toxicology. 97 (4): 293–303. doi:10.1016/j.aquatox.2009.12.014.
  13. "Red Tide FAQ - Is it safe to eat oysters during a red tide?". www.tpwd.state.tx.us. Retrieved 2009-08-23.
  14. Florida Fish and Wildlife Research Institute. "Red Tide Current Status Statewide Information". research.myfwc.com. Retrieved 2009-08-23.
  15. "Red Tide Index". www.tpwd.state.tx.us. Retrieved 2009-08-23.
  16. "Red Tide Fact Sheet - Red Tide (Paralytic Shellfish Poisoning)". www.mass.gov. Archived from the original on 26 August 2009. Retrieved 2009-08-23.
  17. Adams, N. G.; Lesoing, M.; Trainer, V. L. (2000). "Environmental conditions associated with domoic acid in razor clams on the Washington coast". J Shellfish Res. 19: 1007–1015.
  18. Lam, C. W. Y.; Ho, K. C. (1989). "Red tides in Tolo Harbor, Hong Kong". In Okaichi, T.; Anderson, D. M.; Nemoto, T. Red tides. biology, environmental science and toxicology. New York: Elsevier. pp. 49–52. ISBN 0-444-01343-1.
  19. Trainer, V. L.; Adams, N. G.; Bill, B. D.; Stehr, C. M.; Wekell, J. C.; Moeller, P.; Busman, M.; Woodruff, D. (2000). "Domoic acid production near California coastal upwelling zones, June 1998". Limnol Oceanogr. 45 (8): 1818–1833.
  20. Moore, S.; et al. (2011). "Impacts of climate variability and future climate change on harmful algal blooms and human health". Proceedings of the Centers for Oceans and Human Health Investigators Meeting. doi:10.1186/1476-069X-7-S2-S4.
  21. Walsh; et al. (2006). "Red tides in the Gulf of Mexico: Where, when, and why?". Journal of Geophysical Research. 111: C11003. Bibcode:2006JGRC..11111003W. doi:10.1029/2004JC002813.
  22. Cabeza de Vaca, Álvar Núnez. La Relación (1542). Translated by Martin A. dunsworth and José B. Fernández. Arte Público Press, Houston, Texas (1993)
  23. Sellner, K.G.; Doucette G.J.; Kirkpatrick G.J. (2003). "Harmful Algal blooms: causes, impacts and detection". Journal of Industrial Microbiology and Biotechnology. 30 (7): 383–406. doi:10.1007/s10295-003-0074-9. PMID 12898390.
  24. Van Dolah, F.M. (2000). "Marine Algal Toxins: Origins, Health Effects, and Their Increased Occurrence". Environmental Health Perspectives. Brogan &#3. 108 (suppl.1): 133–141. doi:10.2307/3454638. JSTOR 3454638. PMC 1637787Freely accessible. PMID 10698729.
  25. O'Reiley et al, Rapid and highly variable warming of lake surface waters around the globe. In: Geophysical Research Letters (2015), doi:10.1002/2015GL066235.
  26. Brumbaugh, R.D. et al. 2006. A Practitioners Guide to the Design & Monitoring of Shellfish Restoration Projects: An Ecosystem Approach. The Nature Conservancy, Arlington, VA. http://www.habitat.noaa.gov/pdf/tncnoaa_shellfish_hotlinks_final.pdf
  27. "Shinnecock Bay".
  28. "Delaware Oyster Gardening and Restoration -A Cooperative Effort" (PDF).
  29. http://masgc.org/oyster/documents/2012OGmanual.pdf
  30. http://www.mnn.com/earth-matters/wilderness-resources/stories/what-is-causing-the-waves-in-california-to-glow
  31. HAB 2000
  32. Bowling, L.C. and Baker, P.D; ‘Major Cyanobacterial Bloom in the Barwon-Darling River, Australia, in 1991, and Underlying Limnological Conditions’; Marine and Freshwater Research, 47 (1996); pp. 643-57
  33. Moore, Kirk. "Northeast Oysters: The bigger danger, growers assert, would be the label of endangered". National Fisherman. Retrieved 2008-07-31.
  34. Chrisafis, Angelique (10 August 2009). "Lethal algae take over beaches in northern France". The Guardian. London.
  35. "Iceland volcano ash cloud triggers plankton bloom". BBC News. 10 April 2013.
  36. Jacobs, Andrew (July 5, 2013). "Huge Algae Bloom Afflicts Coastal Chinese City". The New York Times.
  37. http://earthobservatory.nasa.gov/IOTD/view.php?id=82968&src=share
  38. http://www.reuters.com/article/2014/08/02/us-usa-water-ohio-idUSKBN0G20L120140802

Further reading

External links

Wikimedia Commons has media related to Algal blooms.
Wikivoyage has travel information for Algal bloom.
This article is issued from Wikipedia - version of the 11/14/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.