Philo Farnsworth

For the American physician, see Philo Judson Farnsworth.
Philo Farnsworth

Philo Farnsworth in 1939
Born Philo Taylor Farnsworth
(1906-08-19)August 19, 1906
Beaver, Utah, United States[1]
Died March 11, 1971(1971-03-11) (aged 64)
Salt Lake City, Utah, United States
Cause of death Pneumonia
Resting place Provo City Cemetery,
Provo, Utah, United States
Nationality American
Other names Philo T. Farnsworth
Employer Philco, Farnsworth Television and Radio Corporation, International Telephone and Telegraph
Known for Inventor of the first fully electronic television; over 169 United States and foreign patents
Religion The Church of Jesus Christ of Latter-Day Saints
Spouse(s) Elma "Pem" Gardner
Parent(s) Lewis Edwin Farnsworth, Serena Amanda Bastian
Relatives Agnes Farnsworth (sister)

Philo Taylor Farnsworth (August 19, 1906 – March 11, 1971) was an American inventor and television pioneer.[2] He made many contributions that were crucial to the early development of all-electronic television.[3] He is perhaps best known for his 1927 invention of the first fully functional all-electronic image pickup device (video camera tube), the "image dissector", as well as the first fully functional and complete all-electronic television system. He was also the first person to demonstrate such a system to the public.[4][5] Farnsworth developed a television system complete with receiver and camera, which he produced commercially in the form of the Farnsworth Television and Radio Corporation, from 1938 to 1951, in Fort Wayne, Indiana.[6][7]

In later life, Farnsworth invented a small nuclear fusion device, the Farnsworth–Hirsch fusor, or simply "fusor", employing inertial electrostatic confinement (IEC). Although not a practical device for generating nuclear energy, the fusor serves as a viable source of neutrons.[8] The design of this device has been the acknowledged inspiration for other fusion approaches including the Polywell reactor concept in terms of a general approach to fusion design.[9] Farnsworth held 300 patents, mostly in radio and television.

Early life

Philo T. Farnsworth was born August 19, 1906, the eldest of five children[10] of Lewis Edwin Farnsworth and Serena Amanda Bastian, an LDS couple then living in a small log cabin built by Lewis's father in a place called Indian Creek near Beaver, Utah. In 1918, the family moved to a relative's 240-acre ranch near Rigby, Idaho,[11] where Lewis supplemented his farming income by hauling freight with his horse-drawn wagon. Philo was excited to find his new home was wired for electricity, with a Delco generator providing power for lighting and farm machinery. He was a quick student in mechanical and electrical technology, repairing the troublesome generator, and upon finding a burned out electric motor among some items discarded by the previous tenants, proceeding to rewind the armature and convert his mother's hand-powered washing machine into an electric-powered one.[12] Philo developed an early interest in electronics after his first telephone conversation with an out-of-state relative and the discovery of a large cache of technology magazines in the attic of the family’s new home,[13] and won a $25 first prize in a pulp-magazine contest for inventing a magnetized car lock.[10]

Farnsworth excelled in chemistry and physics at Rigby High School. He asked his high school science teacher, Justin Tolman, for advice about an electronic television system he was contemplating. He provided the teacher with sketches and diagrams covering several blackboards to show how it might be accomplished electronically. He asked his teacher if he should go ahead with his ideas, and he was encouraged to do so.[14] One of the drawings he did on a blackboard for his chemistry teacher was recalled and reproduced for a patent interference case between Farnsworth and Radio Corporation of America (RCA).[15] In 1923, the Farnsworths moved to Provo, Utah, and Farnsworth attended Brigham Young High School beginning that fall. His father died of pneumonia in January 1924, at age 58, and Farnsworth, as eldest son, assumed responsibility for sustaining the family while still attending high school and graduating in June 1924.[11] He went on to attend Brigham Young University that year, and to earn Junior Radio-Trician certification from the National Radio Institute, adding a full certification in 1925.[11] While attending college, he met Provo High School student Elma “Pem” Gardner,[11] (February 25, 1908 – April 27, 2006),[16] whom he would later marry.

Later in 1924, Farnsworth applied to the United States Naval Academy in Annapolis, Maryland, where he was recruited after he earned the nation's second highest score on academy tests.[13] However, he was already thinking ahead to his television projects; and upon learning that the government would own his patents if he stayed in the military, he sought and received an honorable discharge[13] within months, under a provision in which the eldest child in a fatherless family could be excused from military service in order to provide for his family. He returned to Provo and enrolled again at Brigham Young University, where he was allowed to take advanced science classes.[11]

Philo worked while his sister Agnes, the elder of the two sisters, took charge of the family home and the second-floor boarding house (with the help of a cousin then living with the family). The Farnsworths later moved into half of a duplex, with family friends the Gardners moving into the other side when it became vacant.[17] Philo developed a close friendship with Pem Gardner's brother, Cliff Gardner, who shared Farnsworth's interest in electronics. The two moved to Salt Lake City to start a radio repair business.[13]

The business failed, and Gardner returned to Provo. Farnsworth remained in Salt Lake City, and through enrollment in a University of Utah job-placement service became acquainted with Leslie Gorrell and George Everson, a pair of San Francisco philanthropists who were then conducting a Salt Lake City Community Chest fundraising campaign.[18][19]

They agreed to fund Farnsworth's early television research with an initial $6,000 in backing,[20] and set up a laboratory in Los Angeles for Farnsworth to carry out his experiments.[21] Before relocating to California, Farnsworth married Pem Gardner Farnsworth (February 25, 1908 – April 27, 2006),[16] on May 27, 1926,[11] and the two traveled to the West Coast in a Pullman coach.[13]


Philo T. Farnsworth in the National Statuary Hall Collection, U.S. Capitol, Washington, D.C.

A few months after arriving in California, Farnsworth was prepared to show his models and drawings to a patent attorney who was nationally recognized as an authority on electrophysics. Everson and Gorrell agreed that Farnsworth should apply for patents for his designs, a decision which proved crucial in later disputes with RCA.[22] Most television systems in use at the time used image scanning devices ("rasterizers") employing rotating "Nipkow disks" comprising lenses arranged in spiral patterns such that they swept across an image in a succession of short arcs while focusing the light they captured on photosensitive elements, thus producing a varying electrical signal corresponding to the variations in light intensity. Farnsworth recognized the limitations of the mechanical systems, and that an all-electronic scanning system could produce a superior image for transmission to a receiving device.[22][23]

On September 7, 1927, Farnsworth's image dissector camera tube transmitted its first image, a simple straight line, to a receiver in another room of his laboratory at 202 Green Street in San Francisco.[20] Pem Farnsworth recalled in 1985 that her husband broke the stunned silence of his lab assistants by saying, "There you are — electronic television!"[20] The source of the image was a glass slide, backlit by an arc lamp. An extremely bright source was required because of the low light sensitivity of the design. By 1928, Farnsworth had developed the system sufficiently to hold a demonstration for the press.[24] His backers had demanded to know when they would see dollars from the invention;[25] so the first image shown was, appropriately, a dollar sign. In 1929, the design was further improved by elimination of a motor-generator; so the television system now had no mechanical parts. That year Farnsworth transmitted the first live human images using his television system, including a three and a half-inch image of his wife Pem.

Many inventors had built electromechanical television systems before Farnsworth's seminal contribution, but Farnsworth designed and built the world's first working all-electronic television system, employing electronic scanning in both the pickup and display devices. He first demonstrated his system to the press on September 3, 1928,[24][26] and to the public at the Franklin Institute in Philadelphia on August 25, 1934.[27]

In 1930, Vladimir Zworykin, who had been developing his own all-electronic television system at Westinghouse in Pittsburgh since 1923, but which he had never been able to make work or satisfactorily demonstrate to his superiors,[28] was recruited by RCA to lead its television development department. Before leaving his old employer, Zworykin visited Farnsworth's laboratory and was sufficiently impressed with the performance of the Image Dissector that he reportedly had his team at Westinghouse make several copies of the device for experimentation.[29] But Zworykin later abandoned research on the Image Dissector, which at the time required extremely bright illumination of its subjects to be effective, and turned his attention to what would become the Iconoscope.[30] In a 1970s series of videotaped interviews, Zworykin recalled that, "Farnsworth was closer to this thing you're using now [i.e., a video camera] than anybody, because he used the cathode-ray tube for transmission. But, Farnsworth didn't have the mosaic [of discrete light elements], he didn't have storage. Therefore, [picture] definition was very low.... But he was very proud, and he stuck to his method."[31] Contrary to Zworykin's statement, Farnsworth's patent #2,087,683 for the Image Dissector (filed April 26, 1933) features a "low velocity" method of electron scanning, and describes "discrete particles" whose "potential" is manipulated and "saturated" to varying degrees depending on their velocity.[32] Farnsworth's patent numbers 2,140,695 and 2,233,888 are for a "charge storage dissector" and "charge storage amplifier," respectively.

In 1931, David Sarnoff of RCA offered to buy Farnsworth's patents for US$100,000, with the stipulation that he become an employee of RCA, but Farnsworth refused.[6] In June of that year, Farnsworth joined the Philco company and moved to Philadelphia along with his wife and two children.[33] RCA would later file an interference suit against Farnsworth, claiming Zworykin's 1923 patent had priority over Farnsworth's design, despite the fact it could present no evidence that Zworykin had actually produced a functioning transmitter tube before 1931. Farnsworth had lost two interference claims to Zworykin in 1928, but this time he prevailed and the U.S. Patent Office rendered a decision in 1934 awarding priority of the invention of the image dissector to Farnsworth. RCA lost a subsequent appeal, but litigation over a variety of issues continued for several years with Sarnoff finally agreeing to pay Farnsworth royalties.[34][35] Zworykin received a patent in 1928 for a color transmission version of his 1923 patent application;[36] he also divided his original application in 1931, receiving a patent in 1935,[37] while a second one was eventually issued in 1938[38] by the Court of Appeals on a non-Farnsworth-related interference case,[39] and over the objection of the Patent Office.[40]

In 1932, while in England to raise money for his legal battles with RCA, Farnsworth met with John Logie Baird, a Scottish inventor who had given the world's first public demonstration of a working television system in London in 1926, using an electro-mechanical imaging system, and who was seeking to develop electronic television receivers. Baird demonstrated his mechanical system for Farnsworth.[41] Baird's company directors pursued a merger with Farnsworth, paying $50,000 to supply electronic television equipment and provide access to Farnsworth patents. Baird and Farnsworth competed with EMI for the U.K. standard television system, but EMI merged with the Marconi Company in 1934, gaining access to the RCA Iconoscope patents. After trials of both systems, the BBC committee chose the Marconi-EMI system, which was by then virtually identical to RCA's system. The image dissector scanned well but had poor light sensitivity compared to the Marconi-EMI Iconoscopes, dubbed "Emitrons."

In March 1932, Philco denied Farnsworth time to travel to Utah to bury his young son Kenny, placing a strain on Farnsworth's marriage, and possibly marking the beginning of his struggle with depression.[1] In May 1933, Philco severed its relationship with Farnsworth because, said Everson, "it [had] become apparent that Philo's aim at establishing a broad patent structure through research [was] not identical with the production program of Philco."[42] In Everson's view the decision was mutual and amicable.[43] Farnsworth set up shop at 127 East Mermaid Lane in Philadelphia, and In 1934 held the first public exhibition of his device at the Franklin Institute in that city.[44]

After sailing to Europe in 1934, Farnsworth secured an agreement with Goerz-Bosch-Fernseh in Germany.[22] Some image dissector cameras were used to broadcast the 1936 Olympic Games in Berlin.[45]

Farnsworth returned to his laboratory, and by 1936 his company was regularly transmitting entertainment programs on an experimental basis.[46] That same year, while working with University of Pennsylvania biologists, Farnsworth developed a process to sterilize milk using radio waves.[1] He also invented a fog-penetrating beam for ships and airplanes.[22]

In 1936 he attracted the attention of Collier's Weekly, which described his work in glowing terms. "One of those amazing facts of modern life that just don't seem possible – namely, electrically scanned television that seems destined to reach your home next year, was largely given to the world by a nineteen-year-old boy from Utah ... Today, barely thirty years old he is setting the specialized world of science on its ears."

In 1938, Farnsworth established the Farnsworth Television and Radio Corporation in Fort Wayne, Indiana, with E. A. Nicholas as president and himself as director of research.[6] In September 1939, after a more than decade-long legal battle, RCA finally conceded to a multi-year licensing agreement concerning Farnsworth's 1927 patent for television totaling $1 million. RCA was then free, after showcasing electronic television at New York World's Fair on April 20, 1939, to sell electronic television cameras to the public.[6][27]:250–54

Farnsworth Television and Radio Corporation was purchased by International Telephone and Telegraph (ITT) in 1951. During his time at ITT, Farnsworth worked in a basement laboratory known as "the cave" on Pontiac Street in Fort Wayne. From there he introduced a number of breakthrough concepts, including a defense early warning signal, submarine detection devices, radar calibration equipment and an infrared telescope. "Philo was a very deep person – tough to engage in conversation, because he was always thinking about what he could do next," said Art Resler, an ITT photographer who documented Farnsworth’s work in pictures.[7] One of Farnsworth's most significant contributions at ITT was the PPI Projector, an enhancement on the iconic "circular sweep" radar display, which allowed safe air traffic control from the ground. This system developed in the 1950s was the forerunner of today’s air traffic control systems.[1]

In addition to his electronics research, ITT management agreed to nominally fund Farnsworth's nuclear fusion research. He and staff members invented and refined a series of fusion reaction tubes called "fusors." For scientific reasons unknown to Farnsworth and his staff, the necessary reactions lasted no longer than thirty seconds. In December 1965, ITT came under pressure from its board of directors to terminate the expensive project and sell the Farnsworth subsidiary. It was only due to the urging of president Harold Geneen that the 1966 budget was accepted, extending ITT's fusion research for an additional year. The stress associated with this managerial ultimatum, however, caused Farnsworth to suffer a relapse. A year later he was terminated and eventually allowed medical retirement.[47]

In the spring of 1967, Farnsworth and his family moved back to Utah to continue his fusion research at Brigham Young University, which presented him with an honorary doctorate. The university also offered him office space and an underground concrete bunker for the project. Realizing the fusion lab was to be dismantled at ITT, Farnsworth invited staff members to accompany him to Salt Lake City, as team members in Philo T. Farnsworth Associates (PTFA). By late 1968, the associates began holding regular business meetings and PTFA was underway. Although a contract with the National Aeronautics and Space Administration (NASA) was promptly secured, and more possibilities were within reach, financing stalled for the $24,000 in monthly expenses required to cover salaries and equipment rental.[47]

By Christmas 1970, PTFA had failed to secure the necessary financing, and the Farnsworths had sold all their own ITT stock and cashed in Philo's life insurance policy to maintain organizational stability. The underwriter had failed to provide the financial backing that was to have supported the organization during its critical first year. The banks called in all outstanding loans, repossession notices were placed on anything not previously sold, and the Internal Revenue Service put a lock on the laboratory door until delinquent taxes were paid. In January 1971, PTFA disbanded. Farnsworth had begun abusing alcohol in his later years,[48] and as a consequence he became seriously ill with pneumonia, and died on March 11, 1971.[47]

Farnsworth's wife Elma Gardner "Pem" Farnsworth fought for decades after his death to assure his place in history. Farnsworth always gave her equal credit for creating television, saying, "my wife and I started this TV." She died on April 27, 2006, at age 98.[49] The inventor and wife were survived by two sons, Russell (then living in New York City), and Kent (then living in Fort Wayne, Indiana).[49]

In 1999, Time magazine included Farnsworth in the "Time 100: The Most Important People of the Century".[34]


Electronic television

Farnsworth worked out the principle of the image dissector in the summer of 1921, not long before his fifteenth birthday, and demonstrated the first working version on September 7, 1927, having turned 21 the previous August. A farm boy, his inspiration for scanning an image as series of lines came from the back-and-forth motion used to plow a field.[50][51] In the course of a patent interference suit brought by RCA in 1934 and decided in February 1935, his high school chemistry teacher, Justin Tolman, produced a sketch he had made of a blackboard drawing Farnsworth had shown him in spring 1922. Farnsworth won the suit; RCA appealed the decision in 1936 and lost.[52] Although Farnsworth was paid royalties by RCA, he never became wealthy. The video camera tube that evolved from the combined work of Farnsworth, Zworykin and many others was used in all television cameras until the late 20th century, when alternate technologies such as charge-coupled devices started to appear.

Farnsworth also developed the "image oscillite", a cathode ray tube that displayed the images captured by the image dissector.[53]

Farnsworth called his device an image dissector because it converted individual elements of the image into electricity one at a time. He replaced the spinning disks with caesium, an element that emits electrons when exposed to light.


The Farnsworth–Hirsch fusor is an apparatus designed by Farnsworth to create nuclear fusion. Unlike most controlled fusion systems, which slowly heat a magnetically confined plasma, the fusor injects high-temperature ions directly into a reaction chamber, thereby avoiding a considerable amount of complexity.

When the Farnsworth-Hirsch fusor was first introduced to the fusion research world in the late 1960s, the fusor was the first device that could clearly demonstrate it was producing fusion reactions at all. Hopes at the time were high that it could be quickly developed into a practical power source. However, as with other fusion experiments, development into a power source has proven difficult. Nevertheless, the fusor has since become a practical neutron source and is produced commercially for this role.[8][54][55]

Other inventions

At the time he died, Farnsworth held 300 U.S. and foreign patents. His inventions contributed to the development of radar, infra-red night vision devices, the electron microscope, the baby incubator, the gastroscope, and the astronomical telescope.[47][56]

TV appearance

Although he was the man responsible for its technology, Farnsworth appeared only once on a television program. On July 3, 1957, he was a mystery guest ("Doctor X") on the CBS quiz show I've Got A Secret. He fielded questions from the panel as they unsuccessfully tried to guess his secret ("I invented electronic television."). For stumping the panel, he received $80 and a carton of Winston cigarettes.[18] Host Garry Moore then spent a few minutes discussing with Farnsworth his research on such projects as high-definition television, flat-screen receivers, and fusion power.[57] Farnsworth said, "There had been attempts to devise a television system using mechanical disks and rotating mirrors and vibrating mirrors — all mechanical. My contribution was to take out the moving parts and make the thing entirely electronic, and that was the concept that I had when I was just a freshman in high school in the Spring of 1921 at age 14."[58] When Moore asked about others' contributions, Farnsworth agreed, "There are literally thousands of inventions important to television. I hold something in excess of 165 American patents." The host then asked about his current research, and the inventor replied, "In television, we're attempting first to make better utilization of the bandwidth, because we think we can eventually get in excess of 2000 lines instead of 525 ... and do it on an even narrower channel ... which will make for a much sharper picture. We believe in the picture-frame type of a picture, where the visual display will be just a screen. And we hope for a memory, so that the picture will be just as though it's pasted on there."

A letter to the editor of the Idaho Falls Post Register disputed that Farnsworth had made only one television appearance. Roy Southwick claimed "... I interviewed Mr. [Philo] Farnsworth back in 1953 - the first day KID-TV went on the air."[59] KID-TV, which later became KIDK-TV, was then located near the Rigby area where Farnsworth grew up.

Memorials and legacy

In a 1996 videotaped interview by the Academy of Television Arts & Sciences, Elma Farnsworth recounts Philo's change of heart about the value of television, after seeing how it showed man walking on the moon, in real time, to millions of viewers:[60]

Interviewer: The image dissector was used to send shots back from the moon to earth.
Elma Farnsworth: Right.
Interviewer: What did Phil think of that?
Elma Farnsworth: We were watching it, and, when Neil Armstrong landed on the moon, Phil turned to me and said, "Pem, this has made it all worthwhile." Before then, he wasn't too sure.

In fiction, Farnsworth appeared in the Futurama episode "All The Presidents' Heads" as an ancestor of Professor Farnsworth and Philip J. Fry, and was referred to as having invented the television.

Farnsworth and the introduction of television are significant characters in Carter Beats the Devil, a novel by Glen David Gold published in 2001 by Hyperion.

A fictionalized representation of Farnsworth appears in Canadian writer Wayne Johnston's 1994 novel, Human Amusements. The main character in the novel appears as the protagonist in a television show that features Farnsworth as the main character. In the show, an adolescent Farnsworth invents many different devices (television among them) while being challenged at every turn by a rival inventor.[61]

Plaque at the location of Farnsworth's San Francisco laboratory on Green Street.[24]

Fort Wayne factory razing, residence history

Farnsworth's house in Fort Wayne

In 2010, the former Farnsworth factory in Fort Wayne, Indiana, was razed,[69] eliminating the "cave," where many of Farnsworth's inventions were first created, and where its radio and television receivers and transmitters, television tubes, and radio-phonographs were mass-produced under the Farnsworth, Capehart, and Panamuse trade names.[70] The facility was located at 3702 E. Pontiac St.[70]

Also that year, additional Farnsworth factory artifacts were added to the Fort Wayne History Center's collection, including a radio-phonograph and three table-top radios from the 1940s, as well as advertising and product materials from the 1930s to the 1950s.[71]

Farnsworth's Fort Wayne residence from 1948-1967, then the former Philo T. Farnsworth Television Museum, stands on the northwest corner of E. State and E. St Joseph Boulevards. The residence is recognized by an Indiana state historical marker and was listed on the National Register of Historic Places in 2013.[72][73]

Marion, Indiana factory

In addition to Fort Wayne, Farnsworth operated a factory in Marion, Indiana, that made shortwave radios used by American combat soldiers in World War II.[74] Acquired by RCA after the war, the facility was located at 3301 S. Adams St.[75]



  1. 1 2 3 4 5 "The Philo T. and Elma G. Farnsworth Papers (1924-1992)". University of Utah Marriott Library Special Collections. Archived from the original on April 22, 2008.
  2. Obituary Variety, March 17, 1971, page 79.
  3. "Who Invented What?". The Farnsworth Chronicles. Retrieved 12 May 2014.
  4. "New Television System Uses 'Magnetic Lens'". Popular Mechanics, Dec. 1934, p. 838–839. Retrieved 2010-03-13.
  5. Burns, R. W. (1998), Television: An international history of the formative years. IEE History of Technology Series, 22. London: The Institution of Engineering and Technology (IEE), p. 370. ISBN 0-85296-914-7.
  6. 1 2 3 4 Everson, George (1949). The Story of Television: The Life of Philo T. Farnsworth. New York City: W. W. Norton & Co. p. page #?. ISBN 0-405-06042-4.
  7. 1 2 "ITT, Advancing Human Progress". ITT. Archived from the original on 2007-02-20. Retrieved 2007-07-05.
  8. 1 2 Miley G. H. and J. Sved, "The IEC star-mode fusion neutron source for NAA--status and next-step designs". U.S. National Library of Medicine, National Institutes of Health, October 2000. PMID 11003520 Retrieved 2010-03-13.
  9. Bussard, Robert W.; Mark Duncan. "Should Google Go Nuclear" (PDF). p. 5. Retrieved 2012-07-05.
  10. 1 2 Lovece, Frank (August 1985). "Zworykin vs. Farnsworth, Part I: The Strange Story of TV's Troubled Origins". Video. p. 71. Retrieved May 20, 2013.
  11. 1 2 3 4 5 6 "Philo Taylor Farnsworth: Mathematician, Inventor, Father of Television". Brigham Young High School Alumni. Retrieved April 24, 2015. Article edited by Kent M. Farnsworth, 2006.
  12. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, pp. 7-10. ISBN 1-928791-30-1.
  13. 1 2 3 4 5 Farnsworth, Elma G. (1990). Distant Vision: Romance and Discovery of an Invisible Frontier. Salt Lake City: PemberlyKent Publishers, Inc. p. page #?. ISBN 978-0-9623276-0-5.
  14. Barnouw, Erik (1990). Tube of Plenty: The Evolution of American Television. New York: Oxford University Press.
  15. Godfrey, Donald. "Farnsworth, Philo: U.S. Inventor". The Museum of Broadcast Communications. Retrieved 2007-07-05.
  16. 1 2 "Elma Gardner Farnsworth, 98, Who Helped Husband Develop TV, Dies". The New York Times. May 3, 2006.
  17. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, pp. 20-1. ISBN 1-928791-30-1.
  18. 1 2 Schatzkin, Paul. "The Farnsworth Chronicles". Retrieved 2006-09-08.
  19. Farnsworth, Elma G., p. 6.
  20. 1 2 3 Lovece, Frank (September 1985). "Zworykin vs. Farnsworth, Part II: TV's Founding Fathers Finally Meet — In the Lab". Video. p. 97. Retrieved May 20, 2013.
  21. "Early Electronic TV". Early Television Foundation. Retrieved 2008-09-21.
  22. 1 2 3 4 Collier's Magazine, October 3, 1936.
  23. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, pp. 14-15. ISBN 1-928791-30-1.
  24. 1 2 3 4 "Philo Taylor Farnsworth (1906-1971)", Virtual Museum of the City of San Francisco, retrieved 2009-07-15.
  25. Schwartz, Evan I., The Last Lone Inventor: A Tale of Genius, Deceit & the Birth of Television, HarperCollins, 2002. ISBN 0-06-621069-0
  26. Farnsworth, Elma G., p. 108.
  27. 1 2 Abramson, Albert (1987). The History of Television, 1880 to 1941. Jefferson, North Carolina: McFarland & Co. p. 209. ISBN 0-89950-284-9.
  28. Abramson, pp. 79-81.
  29. Abramson, pp. 149-151.
  30. Abramson, p. 173.
  31. Lovece, "Part II", p. 98
  32. Schatzkin, Paul. "Reconciling The Historical Origins of Electronic Video", The Farnsworth Chronicles, excerpt
  33. Farnsworth, Elma G., pp. 135-8.
  34. 1 2 Postman, Neil (1999-03-29). "The Time 100: Scientists & Thinkers: Philo Farnsworth". Time. Retrieved 2009-07-28.
  35. Burns, R. W. (1998). Television: an international history of the formative years. IET. p. 366. ISBN 978-0-85296-914-4.
  36. Zworykin, Vladimir K., Television System. Patent No. 1691324, U.S. Patent Office. Filed 1925-07-13, issued 1928-11-13. Retrieved 2009-07-28
  37. Zworykin, Vladimir K., Television System. Patent No. 2022450, U.S. Patent Office. Filed 1923-12-29, issued 1935-11-26. Retrieved 2010-05-10.
  38. Zworykin, Vladimir K., Television System. Patent No. 2141059, U.S. Patent Office. Filed 1923-12-29, issued 1938-12-20. Retrieved 2009-11-19.
  39. "Wins Basic Patent in Television Field," The New York Times, Dec. 22, 1938, p. 38:6. Retrieved 2010-03-04.
  40. Schatzkin, Paul (1977, 2001), "Who Invented What -- and When??", The Farnsworth Chronicles. Retrieved 2009-11-19.
  41. Godfrey, D. G. (2001). "Philo T. Farnsworth: The Father of Television. University of Utah Press.". p. 69. ISBN 0-87480-6755. Retrieved 2012-07-05.
  42. Abramson, p. 195.
  43. Everson, pp.. 135-136.
  44. "Philo T. Farnsworth (1906-1971) Historical Marker". Philadelphia: (WITF-TV). Archived from the original on March 20, 2013. Retrieved January 19, 2016.
  45. Abramson, pp. 232-233.
  46. Everson, pp. 199-211.
  47. 1 2 3 4 "Biography of Philo Taylor Farnsworth". University of Utah Marriott Library Special Collections. Retrieved 2007-07-05.
  48. Michael Largo (2006). Final Exits: The Illustrated Encyclopedia of How We Die (New York: Harper Collins, ISBN 978-0-06-081741-1) p. 29.
  49. 1 2 Hummel, Debbie. "Elma Farnsworth, widow of TV pioneer, dies at 98", Daily Herald (Provo, Utah), April 28, 2006, p. D5.
  50. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, pp. 17–9. ISBN 1-928791-30-1.
  51. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, pp. 53–4. ISBN 1-928791-30-1.
  52. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, pp. 111–8. ISBN 1-928791-30-1.
  53. Schatzkin, Paul (2002), The Boy Who Invented Television. Silver Spring, Maryland: Teamcom Books, p. 50. ISBN 1-928791-30-1.
  54. Cartlidge, Edwin. The Secret World of Amateur Fusion. Physics World, March 2007: IOP Publishing Ltd, pp. 10-11. ISSN 0953-8585.
  55. "The Secret World of Amateur Fusion". Physics World. March 2007.
  56. "Philo T. Farnsworth", The Architect of the Capitol. Retrieved 2008-04-08.
  57. Philo Farnsworth on I've Got A Secret on YouTube
  58. Farnsworth, Elma G., p. 37.
  59. Idaho Falls Post Register, December 10, 2007, p. A4 (digital version requires subscription)
  60. Elma "Pen" Farnsworth. (Part 10 of 12) Academy of Television Arts & Sciences. June 25, 1996. Retrieved May 19, 2015.
  61. Johnston, Wayne (July 1994). Human Amusements. McClelland and Stewart.
  62. "TV Pioneer Recognized as Eagle Scout". Eagletter. 32 (2): 10. Fall 2006.
  63. "Visitor Tips and News About Statue of Philo Farnsworth, Inventor of TV". Retrieved 2012-07-05.
  64. Weekes, G. (2010-09-09). "San Francisco's Hidden Stairways". AAA TravelViews. AAA. Retrieved 2011-09-06. External link in |work= (help)
  65. Bakalinsky, A. (2010-12-01). Stairway Walks in San Francisco (7th ed.). Wilderness Press. ISBN 978-0-89997-637-2. OCLC 617591964.
  66. Rosa Salter Rodriguez (2009-07-12). "Dwelling on accomplishments". The Journal Gazette. Retrieved 2012-07-05.
  67. "Main Street Gazette: The shoulders of giants". 2009-07-16. Retrieved 2012-07-05.
  70. 1 2
  73. "National Register of Historic Places Listings". Weekly List of Actions Taken on Properties: 3/18/13 through 3/22/13. National Park Service. 2013-03-29.

Further reading

  • Abramson, Albert. The History of Television, 1942 to 2000. (2003). Jefferson, NC: McFarland & Co. ISBN 0-7864-1220-8.
  • Farnsworth, Russell. (2002). Philo T. Farnsworth: The Life of Television's Forgotten Inventor. Hockessin, Delaware: Mitchell Lane Publishers. ISBN 978-1-58415-176-0 (cloth)
  • Fisher, David E. and Marshall J., 1996. Tube, the Invention of Television. Washington D.C.: Counterpoint. ISBN 1-887178-17-1
  • Godfrey, D. G., 2001. Philo T. Farnsworth: The Father of Television. University of Utah Press. ISBN 0-87480-675-5
  • Schwartz, Evan I., 2002. The Last Lone Inventor: A Tale of Genius, Deceit & the Birth of Television. New York: HarperCollins. ISBN 0-06-093559-6
  • Stashower, Daniel, 2002. The Boy Genius and the Mogul: The Untold Story of Television. New York: Broadway Books. ISBN 0-7679-0759-0

External links

Wikimedia Commons has media related to Philo Taylor Farnsworth.
This article is issued from Wikipedia - version of the 11/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.