Moons of Pluto

(Images not to scale)

The dwarf planet Pluto has five moons down to a detection limit of about 1 km in diameter. In order of distance from Pluto, they are Charon, Styx, Nix, Kerberos, and Hydra.[1] Charon, the largest of the five moons, is mutually tidally locked with Pluto, and is massive enough that Pluto–Charon is sometimes considered a double dwarf planet.


The innermost and largest moon, Charon, was discovered by James Christy on 22 June 1978, nearly half a century after Pluto was discovered. This led to a substantial revision in estimates of Pluto's size, which had previously assumed that the observed mass and reflected light of the system were all attributable to Pluto alone.

Two additional moons were imaged by astronomers of the Pluto Companion Search Team preparing for the New Horizons mission and working with the Hubble Space Telescope on 15 May 2005, which received the provisional designations S/2005 P 1 and S/2005 P 2. The International Astronomical Union officially named these moons Nix (or Pluto II, the inner of the two moons, formerly P 2) and Hydra (Pluto III, the outer moon, formerly P 1), on 21 June 2006.[2] Kerberos, announced on 20 July 2011, was detected using NASA's Hubble Space Telescope during a survey searching for rings around Pluto. It was first seen in an image taken with Hubble's Wide Field Camera 3 on 28 June. It was confirmed in subsequent Hubble pictures taken on 3 and 18 July.[3] Styx, announced on 7 July 2012, was discovered while looking for potential hazards for New Horizons.[4]

Small moons of Pluto - studies suggest the moons were the result of merged bodies.


Pluto and Charon, to scale. Photo taken by New Horizons on approach.
Main article: Charon (moon)

Charon is about half the diameter of Pluto and is so massive (nearly one eighth of the mass of Pluto) that the system's barycenter lies between them, approximately 960 km above Pluto's surface.[5][lower-alpha 1] Charon and Pluto are also tidally locked, so that they always present the same face toward each other. The IAU General Assembly in August 2006 considered a proposal that Pluto and Charon be reclassified as a double planet, but the proposal was abandoned.[6]

Small moons

The Hubble discovery image of Nix and Hydra
Discovery image of Styx, overlaid with orbits of the satellite system

Pluto's four small moons orbit Pluto at two to four times the distance of Charon, ranging from Styx at 42,700 kilometres to Hydra at 64,800 kilometres from the barycenter of the system. They have nearly circular prograde orbits in the same orbital plane as Charon.

All are much smaller than Charon. Nix and Hydra, the two larger, are roughly 42 and 55 kilometers on their longest axis respectively,[7] and Styx and Kerberos are 7 and 12 kilometers respectively.[8][9] All four are irregularly shaped.


The relative masses of Pluto's moons. Charon dominates the system. Nix and Hydra are barely visible and Styx and Kerberos are invisible at this scale.
An oblique schematic view of the Pluto–Charon system showing that Pluto orbits a point outside itself. Also visible is the mutual tidal locking between the two bodies.

The Pluto system is highly compact and largely empty.[10] Moons could potentially orbit Pluto at up to 53% (or 69%, if retrograde) of the Hill radius, the stable gravitational zone of Pluto's influence.[11] For example, Psamathe orbits Neptune at 40% of the Hill radius. In the case of Pluto, only the inner 3% of the region where prograde orbits would be stable is occupied by satellites,[10] and the region from Styx to Hydra is packed so tightly that there is little room for further moons with stable orbits.[12] An intense search conducted by New Horizons confirmed that no moons larger than 4.5 km in diameter exist at the distances up to 180,000 km from Pluto (for smaller distances, this threshold is still smaller).[13] Further information is expected as more sensitive data from the New Horizons flyby is sent back to Earth.

The orbits of the moons are confirmed to be circular and coplanar, with inclinations differing less than 0.4° and eccentricities less than 0.005. As seen from Earth, these circular orbits appear foreshortened into ellipses depending on Pluto's position.[14]

The discovery of Nix and Hydra suggested that Pluto could have a ring system. Small-body impacts can create debris that can form into a ring system. However, data from a deep-optical survey by the Advanced Camera for Surveys on the Hubble Space Telescope, by occultation studies,[15] and later by New Horizons suggest that no ring system is present.


Styx, Nix, and Hydra are thought to be in a 3-body orbital resonance with orbital periods in a ratio of 18:22:33.[16] The ratios should be exact when orbital precession is taken into account. This means that in a recurring cycle there are 11 orbits of Styx for every 9 of Nix and 6 of Hydra, putting Nix and Hydra into a simple 2:3 resonance.[16][17] The ratios of synodic periods are then such that there are 5 Styx–Hydra conjunctions and 3 Nix–Hydra conjunctions for every 2 conjunctions of Styx and Nix.[16] As with the Laplace resonance of the Galilean satellites of Jupiter, triple conjunctions never occur.

All of the outer circumbinary moons are also close to mean motion resonance with the Charon–Pluto orbital period. Styx, Nix, Kerberos, and Hydra are in a 1:3:4:5:6 sequence of near resonances, with Styx approximately 5.4% from its resonance, Nix approximately 2.7%, Kerberos approximately 0.6%, and Hydra approximately 0.3%.[18] It may be that these orbits originated as forced resonances when Charon was tidally boosted into its current synchronous orbit, and then released from resonance as Charon's orbital eccentricity was tidally damped. The Pluto–Charon pair creates strong tidal forces, with the gravitational field at the outer moons varying by 15% peak to peak.

However, it was calculated that a resonance with Charon could boost either Nix or Hydra into its current orbit, but not both: boosting Hydra would have required a near-zero Charonian eccentricity of 0.024, whereas boosting Nix would have required a larger eccentricity of at least 0.05. This suggests that Nix and Hydra were instead captured material, formed around Pluto–Charon, and migrated inward until they were trapped in resonance with Charon.[19] The existence of Kerberos and Styx may support this idea.

Configurations of Hydra (blue), Nix (red) and Styx (black) over one quarter of the cycle of their mutual orbital resonance. Movements are counterclockwise and orbits completed are tallied at upper right of diagrams (click on image to see the complete cycle).


Nix, Hydra, Styx, and Kerberos rotate chaotically. According to Mark R. Showalter, author of a recent study,[16] "Nix can flip its entire pole. It could actually be possible to spend a day on Nix in which the sun rises in the east and sets in the north. It is almost random-looking in the way it rotates."[20] This is because they are in a dynamically changing gravitational field caused by Pluto and Charon orbiting each other. The variable gravitational field creates torques that make Nix and Hydra tumble. The torques are increased because the moons are elongated and not spherical.[16][21][22][23] Only one other moon, Saturn's moon Hyperion, is known to tumble,[23] though it is likely that Haumea's moons do so as well.

Rotations of the small moons of Pluto
(animation; 01:00; released 10 November 2015)


Formation of Pluto's moons. 1: a Kuiper belt object approaches Pluto; 2: it impacts Pluto; 3: a dust ring forms around Pluto; 4: the debris aggregates to form Charon; 5: Pluto and Charon relax into spherical bodies.

It is suspected that Pluto's satellite system was created by a massive collision, similar to the "big whack" thought to have created the Moon.[24][25] In both cases, the high angular momenta of the moons can only be explained by such a scenario. The nearly circular orbits of the smaller moons suggests that they were also formed in this collision, rather than being captured Kuiper Belt objects. This and their near orbital resonances with Charon (see below) suggest that they formed closer to Pluto than they are at present and migrated outward as Charon reached its current orbit. Their grey color is different from that of Pluto, one of the reddest bodies in the Solar System. This is thought to be due to a loss of volatiles during the impact or subsequent coalescence, leaving the surfaces of the moons dominated by water ice. However, such an impact should have created additional debris (more moons), yet no moons or rings were discovered by New Horizons, ruling out any more moons of significant size orbiting Pluto.


Pluto's moons are listed here by orbital period, from shortest to longest. Charon, which is massive enough to have collapsed into a spheroid at some point in its history, is highlighted in light purple. Pluto has been added for comparison.[16][26]

Image Diameter
Mass (×1019 kg) Semi-major
axis (km)
Orbital period
Orbital period
(relative to Charon)
Eccentricity Inclination (°)
(to Pluto's equator)
Magnitude (mean) Discovery
Pluto[27] /ˈplt/
2372±4 1305±7 2035 6.387230 1 : 1 0.0022[lower-alpha 2] 0.001 15.1 1930/02/18
Pluto I Charon /ˈʃærən/,[lower-alpha 3]
1208±3 158.7±1.5 17536±3* 6.387230 1 : 1 0.0022[lower-alpha 2] 0.001 16.8 1978/06/22
Pluto V Styx /ˈstɪks/ 16 × 9 × 8 ±?[28] ? 42656±78 20.16155±0.00027 1 : 3.16 0.0058 ± 0.0011 0.81 ± 0.16 27 2012/06/26
Pluto II Nix /ˈnɪks/ 50 × 35 × 33 ±?[28] 0.005 ± 0.004 48694±3 24.85463±0.00003 1 : 3.89 0.002036 ± 0.000050 0.133 ± 0.008 23.7 2005/06/15
Pluto IV Kerberos /ˈkɜːrbərəs/ 19 × 10 × 9[28] ? 57783±19 32.16756±0.00014 1 : 5.04 0.00328 ± 0.00020 0.389 ± 0.037 26 2011/06/28
Pluto III Hydra /ˈhdrə/
65 × 45 × 25 ±?[28] 0.005 ± 0.004 64738±3 38.20177±0.00003 1 : 5.98 0.005862 ± 0.000025 0.242 ± 0.005 23.3 2005/06/15

The maximum distance between the centers of Pluto and Charon is 19,571 ± 4 km.

Scale model of the Pluto system

The small moons to approximate scale, compared to Charon


Simulated view of Charon eclipsing Pluto on 25 February 1989.
Simulation views of Pluto and Charon during the solar eclipse of 12 August 2110, rendered in Celestia. The eclipse gives Pluto the appearance of a "pitted olive in space".

Solar eclipses occur when one of at least three of Pluto's moons passes between Pluto and the Sun, casting a shadow on Pluto. This occurs when one of the satellites' orbital nodes (the points where their orbits cross Pluto's ecliptic) lines up with Pluto and the Sun. Due to Pluto's large axial tilt, this can only occur at two points in Pluto's orbit, at perihelion and aphelion.

Charon has an angular diameter of 4 degrees of arc as seen from the surface of Pluto; the Sun appears much smaller, only 39 to 65 arcseconds. Charon's proximity further ensures that a large proportion of Pluto's surface can experience an eclipse. Because Pluto always presents the same face towards Charon due to tidal locking, only the Charon-facing hemisphere experiences solar eclipses by Charon.

The smaller moons can cast shadows elsewhere. The angular diameters of the four smaller moons (as seen from Pluto) are uncertain. Nix's is 3–9 minutes of arc and Hydra's is 2–7 minutes. These are much larger than the Sun's angular diameter, so total solar eclipses are caused by these moons.

Eclipses by Styx and Kerberos are more difficult to estimate, as both moons are very irregular, with angular dimensions of 76.9 x 38.5 to 77.8 x 38.9 arcseconds for Styx, and 67.6 x 32.0 to 68.0 x 32.2 for Kerberos. As such, Styx has no annular eclipses, its widest axis being more than 10 arcseconds larger than the Sun at its largest. However, Kerberos, although slightly larger, cannot make total eclipses as its largest minor axis is a mere 32 arcseconds. Eclipses by Kerberos and Styx will entirely consist of partial and hybrid eclipses, with total eclipses being extremely rare.

The next period of solar eclipses due to Charon will begin in October 2103, peak in 2110, and end in January 2117. During this period, solar eclipses will occur once each Plutonian day, with a maximum duration of 90 minutes.[29][30]


The Pluto system was visited by the New Horizons spacecraft in July 2015. Images with resolutions of up to 330 meters per pixel were returned of Nix and up to 1.1 kilometers per pixel of Hydra. Lower-resolution images were returned of Styx and Kerberos.[31]


  1. "P1P2_motion.avi". Archived from the original (AVI) on 4 November 2005. and barycenter for animations
  2. 1 2 Orbital eccentricity and inclination of Pluto and Charon are equal because they refer to the same two-body problem (the gravitational influence of the smaller satellites is neglected here).
  3. Many astronomers use this, Christy's pronunciation, rather than the classical /ˈkɛərɒn/, but both are acceptable.


  1. "Moons dance around Pluto". Smithsonian Institution. 9 June 2015. Retrieved 9 April 2016.
  2. Green, Daniel W. E. (21 June 2006). "Satellites of Pluto". IAU Circular. 8723. Retrieved 26 November 2011.
  3. "NASA's Hubble Discovers Another Moon Around Pluto". NASA. 20 July 2011. Retrieved 20 July 2011.
  4. "Hubble Discovers a Fifth Moon Orbiting Pluto". 29 July 2012. Retrieved 2015-07-29.
  5. Staff (30 January 2014). "Barycenter". Retrieved 4 June 2015.
  6. "The IAU draft definition of "planet" and "plutons"". International Astronomical Union. 16 August 2006. Retrieved 4 June 2015.
  7. "New Horizons 'Captures' Two of Pluto's Smaller Moons". New Horizons. Retrieved 2015-07-29.
  8. New Horizons Picks Up Styx
  9. Last of Pluto’s Moons – Mysterious Kerberos – Revealed by New Horizons
  10. 1 2 Stern, S. Alan; Weaver, Harold A., Jr.; Steffl, Andrew J.; et al. (2005). "Characteristics and Origin of the Quadruple System at Pluto". Submitted to Nature. arXiv:astro-ph/0512599Freely accessible.
  11. Steffl, A. J.; Mutchler, M. J.; Weaver, H. A.; Stern, S. A.; Durda, D. D.; Terrell, D.; Merline, W. J.; Young, L. A.; Young, E. F.; Buie, M. W.; Spencer, J. R. (2006). "New Constraints on Additional Satellites of the Pluto System". The Astronomical Journal. 132 (2): 614–619. arXiv:astro-ph/0511837Freely accessible. Bibcode:2006AJ....132..614S. doi:10.1086/505424.
  12. Kenyon, S. J. (2015-06-03). "Astronomy: Pluto leads the way in planet formation". Nature. 522 (7554): 40–41. Bibcode:2015Natur.522...40K. doi:10.1038/522040a.
  13. Stern, S. A.; Bagenal, F.; Ennico, K.; et al. (2015). "The Pluto system: Initial results from its exploration by New Horizons" (PDF). Science. 350 (6258): aad1815. arXiv:1510.07704Freely accessible. Bibcode:2015Sci...350.1815S. doi:10.1126/science.aad1815. PMID 26472913. (Supplements)
  14. "Orbits of 4 Bodies in Pluto System about Barycenter as Seen from Earth". Hubblesite. Retrieved 21 June 2006.
  15. Pasachoff, Jay M.; Babcock, Bryce A.; Souza, Steven P.; et al. (2006). "A Search for Rings, Moons, or Debris in the Pluto System during the 2006 July 12 Occultation". Bulletin of the American Astronomical Society. 38 (3): 523. Bibcode:2006DPS....38.2502P.
  16. 1 2 3 4 5 6 Showalter, M. R.; Hamilton, D. P. (3 June 2015). "Resonant interactions and chaotic rotation of Pluto's small moons". Nature. 522 (7554): 45–49. Bibcode:2015Natur.522...45S. doi:10.1038/nature14469. PMID 26040889.
  17. Witze, Alexandra (2015). "Pluto's moons move in synchrony". Nature. doi:10.1038/nature.2015.17681.
  18. Matson, J. (11 July 2012). "New Moon for Pluto: Hubble Telescope Spots a 5th Plutonian Satellite". Scientific American web site. Retrieved 12 July 2012.
  19. Lithwick, Y.; Y. Wu (2008). "On the Origin of Pluto's Minor Moons, Nix and Hydra". arXiv:0802.2951Freely accessible [astro-ph].
  20. Chang, Kenneth (3 June 2015). "Astronomers Describe the Chaotic Dance of Pluto's Moons". New York Times. Retrieved 4 June 2015.
  21. "NASA's Hubble Finds Pluto's Moons Tumbling in Absolute Chaos". Retrieved 3 June 2015.
  22. "Hubble Finds Two Chaotically Tumbling Pluto Moons". 3 June 2015. Retrieved 3 June 2015.
  23. 1 2 Drake, Nadia; 03, National Geographic Published June. "Pluto's Moons Dance to a Random Beat". National Geographic News. Retrieved 4 June 2015.
  24. Canup, R. M. (8 January 2005). "A Giant Impact Origin of Pluto-Charon". Science. 307 (5709): 546–550. Bibcode:2005Sci...307..546C. doi:10.1126/science.1106818. PMID 15681378. Retrieved 2011-07-20.
  25. Stern, S. A.; Weaver, H. A.; Steff, A. J.; Mutchler, M. J.; Merline, W. J.; Buie, M. W.; Young, E. F.; Young, L. A.; Spencer, J. R. (23 February 2006). "A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt" (PDF). Nature. 439 (7079): 946–948. Bibcode:2006Natur.439..946S. doi:10.1038/nature04548. PMID 16495992. Retrieved 2011-07-20.
  26. Orbital elements of small satellites from Showalter and Hamilton, 2015; mass and magnitude from Buie & Grundy, 2006
  27. Pluto data from D. R. Williams (7 September 2006). "Pluto Fact Sheet". NASA. Retrieved 24 March 2007..
  28. 1 2 3 4 Weaver et al. (2016)
  29. "Start of Eclipse". JPL Solar System Simulator. 12 December 1987. Retrieved 2014-07-29. External link in |publisher= (help) (Pluto as seen from the Sun during mid-eclipse)
  30. "End of Eclipse". JPL Solar System Simulator. 12 December 1987. Retrieved 2014-07-29.
  31. New Horizons flyby timeline


External links

Wikimedia Commons has media related to Moons of Pluto.
This article is issued from Wikipedia - version of the 12/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.