Michel Demazure

Michel Demazure

Michel Demazure, Bures-sur-Yvette 2007
Born (1937-03-02) 2 March 1937
Nationality French
Fields Mathematics
Institutions École Polytechnique
Alma mater University of Paris
Doctoral advisor Alexander Grothendieck
Doctoral students Pierre-Vincent Koseleff
René Lalement
Bernard Mourrain
Guy Rousseau

Michel Demazure (French: [dəmazyʁ]; born 2 March 1937)[1] is a French mathematician. He made contributions in the fields of abstract algebra, algebraic geometry, and computer vision, and participated in the Nicolas Bourbaki collective. He has also been president of the French Mathematical Society and directed two French science museums.


In the 1960s, Demazure was a student of Alexandre Grothendieck, and, together with Grothendieck, he ran and edited the Séminaire de Géométrie Algébrique du Bois Marie on group schemes at the Institut des Hautes Études Scientifiques near Paris from 1962 to 1964. Demazure obtained his doctorate from the Université de Paris in 1965 under Grothendieck's supervision, with a dissertation entitled Schémas en groupes reductifs.[2] He was maître de conférence at Strasbourg University (1964–1966),[3] and then university professor at Paris-Sud in Orsay (1966–1976)[4] and the École Polytechnique in Palaiseau (1976–1999).[4] From approximately 1965 to 1985, he was also one of the core members of the Bourbaki group, a group of French mathematicians writing under the collective pseudonym Nicolas Bourbaki.[5]

In 1988 Demazure was the president of the Société Mathématique de France.[6] From 1991 to 1998, he was the director of the Palais de la Découverte in Paris and, from 1998 to 2002, the chairman of the Cité des Sciences et de l'Industrie in La Villette, two major science museums in France;[4] in taking these positions, he changed places with Jean Audouze, who was at La Villette from 1993 to 1996, and became director of the Palais de la Découverte on Demazure's departure.[7] Demazure also chairs the regional advisory committee of research for Languedoc-Roussillon.[8]

Research contributions

In SGA3, Demazure introduced the definition of a root datum, a generalization of root systems for reductive groups that is central to the notion of Langlands duality.[9] A 1970 paper of Demazure on subgroups of the Cremona group[10] has been later recognized as the beginning of the study of toric varieties.[11]

The Demazure character formula and Demazure modules and Demazure conjecture are named after Demazure, who wrote about them in 1974.[12] Demazure modules are submodules of a finite-dimensional representation of a semisimple Lie algebra, and the Demazure character formula is an extension of the Weyl character formula to these modules. Demazure's work in this area was marred by a dependence on a false lemma in an earlier paper (also by Demazure); the flaw was pointed out by Victor Kac, and subsequent research clarified the conditions under which the formula remains valid.[13]

Later in his career, Demazure's research emphasis shifted from pure mathematics to more computational problems, involving the application of algebraic geometry to image reconstruction problems in computer vision.[14] The Kruppa–Demazure theorem, stemming from this work, shows that if a scene consisting of five points is viewed from two cameras with unknown positions but known focal lengths then, in general, there will be exactly ten different scenes that could have generated the same two images. Austrian mathematician Erwin Kruppa had many years earlier narrowed the number of possible scenes to eleven, and Demazure provided the first complete solution to the problem.[15]



  1. according to Who's Who in France.
  2. Michel Demazure at the Mathematics Genealogy Project.
  3. "Vie de la société", Bull. S.M.F., 93: 2–42, 1965.
  4. 1 2 3 Author biography from Bifurcations and Catastrophes.
  5. Mashaal, Maurice (2006), Bourbaki: a secret society of mathematicians, American Mathematical Society, ISBN 978-0-8218-3967-6. On page 12 he is listed as one of four "key members", on page 105 it states that his active work with Bourbaki ceased around 1985, and on page 122 he is quoted as having "twenty years at Bourbaki".
  6. Anciens Présidents, Société Mathématique de France, retrieved 2011-07-26.
  7. "Jean Audouze", Les Échos, September 9, 1998.
  8. Séance plénière du Conseil Régional, 29 November 2010, retrieved 2011-07-27. "Le Conseil Régional du 3 mai 2005 a approuvé la création du Comité Consultatif Régional de Recherche et de Développement Technologique, dénommé Comité ARAGO, auprès du Conseil Régional Languedoc-Roussillon. Le Comité ARAGO, présidé par Michel Demazure, ..."
  9. Springer, T. A. (1984), "Linear algebraic groups", in Jäger, W.; Moser, J.; Remmert, R., Perspectives in Mathematics: Anniversary of Oberwolfach 1984, Basel: Birkhäuser, pp. 455–495, MR 779686. On p. 468, Springer writes "The notion of root datum is due to Demazure."
  10. Demazure, Michel (1970), "Sous-groupes algébriques de rang maximum du groupe de Cremona", Annales Scientifiques de l'École Normale Supérieure, 3: 507–588, MR 0284446.
  11. Sottile, Frank (2014), "Book review: Toric varieties, by David A. Cox, John B. Little, and Henry K. Schenck", Bulletin of the American Mathematical Society, New Series, 51 (3): 505–510, doi:10.1090/S0273-0979-2013-01441-1, MR 3196799.
  12. Demazure, Michel (1974), "Une nouvelle formule des caractères", Bulletin des Sciences Mathématiques, 2e Sér., 98 (3): 163–172, ISSN 0007-4497, MR 0430001.
  13. Joseph, A. (1985), "On the Demazure character formula", Annales Scientifiques de l'École Normale Supérieure, 4e Sér., 18 (3): 389–419, MR 826100.
  14. Demazure, Michel (1988), Sur deux problèmes de reconstruction (PDF), Tech. Report 882, Rocquencourt, France: INRIA.
  15. Heyden, Anders; Sparr, Gunnar (1999), "Reconstruction from calibrated cameras—a new proof of the Kruppa-Demazure theorem", Journal of Mathematical Imaging and Vision, 10 (2): 123–142, doi:10.1023/A:1008370905794, MR 1692787.
This article is issued from Wikipedia - version of the 10/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.