Isotopes of meitnerium

Meitnerium (Mt) is a synthetic element, and thus a standard atomic mass cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 266Mt in 1982 (this is also the only isotope directly synthesized, all other isotopes are decay products of heavier elements). There are eight known isotopes, from 266Mt to 278Mt. There may also be two isomers. The longest-lived of the known isotopes is 278Mt with a half-life of 8 seconds.

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)
daughter
isotope(s)
nuclear
spin
excitation energy
266Mt 109 157 266.13737(33)# 1.2(4) ms α 262Bh
268Mt[n 1] 109 159 268.13865(25)# 21(+8−5) ms α 264Bh 5+#,6+#
268mMt[n 2] 0+X keV 0.07(+10−3) s α 264Bh
270Mt[n 3] 109 161 270.14033(18)# 0.57 s α 266Bh
270mMt[n 2] 1.1 s? α 266Bh
274Mt[n 4] 109 165 274.14725(38)# 0.45 s α 270Bh
275Mt[n 5] 109 166 275.14882(50)# 9.7(+460−44) ms α 271Bh
276Mt[n 6] 109 167 276.15159(59)# 0.72(+87-25) s α 272Bh
277Mt[n 7] 109 168 277.15327(82)# ~5 ms[1][2] SF (various)
278Mt[n 8] 109 169 278.15631(68)# 7.6 s[3] α 274Bh
  1. Not directly synthesized, occurs as decay product of 272Rg
  2. 1 2 This isomer is unconfirmed
  3. Not directly synthesized, occurs in decay chain of 278Nh
  4. Not directly synthesized, occurs in decay chain of 282Nh
  5. Not directly synthesized, occurs in decay chain of 287Mc
  6. Not directly synthesized, occurs in decay chain of 288Mc
  7. Not directly synthesized, occurs in decay chain of 293Ts
  8. Not directly synthesized, occurs in decay chain of 294Ts

Notes

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as meitnerium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of meitnerium, meitnerium-266, can be synthesized directly this way, all the heavier meitnerium isotopes have only been observed as decay products of elements with higher atomic numbers.[4]

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons.[5] In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products.[4] Nevertheless, the products of hot fusion tend to still have more neutrons overall. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).[6]

Cold fusion

After the first successful synthesis of meitnerium in 1982 by the GSI team,[7] a team at the Joint Institute for Nuclear Research in Dubna, Russia, also tried to observe the new element by bombarding bismuth-209 with iron-58. In 1985 they managed to identity alpha decays from the descendant isotope 246Cf indicating the formation of meitnerium. The observation of a further two atoms of 266Mt from the same reaction was reported in 1988 and of another 12 in 1997 by the German team at GSI.[8][9]

The same meitnerium isotope was also observed by the Russian team at Dubna in 1985 from the reaction:

208
82
Pb
+ 59
27
Co
266
109
Mt
+
n

by detecting the alpha decay of the descendant 246Cf nuclei. In 2007, an American team at the Lawrence Berkeley National Laboratory (LBNL) confirmed the decay chain of the 266Mt isotope from this reaction.[10]

Hot fusion

In 2002–2003, the team at the LBNL attempted to generate the isotope 271Mt to study its chemical properties by bombarding uranium-238 with chlorine-37, but without success.[11] Another possible reaction that would form this isotope would be the fusion of berkelium-249 with magnesium-26; however, the yield for this reaction is expected to be very low due to the high radioactivity of the berkelium-249 target.[12] Other long-lived isotopes were unsuccessfully targeted by a team at Lawrence Livermore National Laboratory (LLNL) in 1988 by bombarding einsteinium-254 with neon-22.[11]

Decay products

List of meitnerium isotopes observed by decay
Evaporation residue Observed meitnerium isotope
294Ts, 290Mc, 286Nh, 282Rg278Mt[13]
293Ts, 289Mc, 285Nh, 281Rg277Mt[1]
288Mc, 284Nh, 280Rg276Mt[14]
287Mc, 283Nh, 279Rg275Mt[14]
282Nh, 278Rg274Mt[14]
278Nh, 274Rg270Mt[15]
272Rg268Mt[16]

All the isotopes of meitnerium except meitnerium-266 have been detected only in the decay chains of elements with a higher atomic number, such as roentgenium. Roentgenium currently has seven known isotopes; all but one of them undergo alpha decays to become meitnerium nuclei, with mass numbers between 268 and 278. Parent roentgenium nuclei can be themselves decay products of nihonium, moscovium, or tennessine. To date, no other elements have been known to decay to meitnerium.[17] For example, in January 2010, the Dubna team (JINR) identified meitnerium-278 as a product in the decay of tennessine via an alpha decay sequence:[13]

294
117
Ts
290
115
Mc
+ 4
2
He
290
115
Mc
286
113
Nh
+ 4
2
He
286
113
Nh
282
111
Rg
+ 4
2
He
282
111
Rg
278
109
Mt
+ 4
2
He

Nuclear isomerism

270Mt

Two atoms of 270Mt have been identified in the decay chains of 278Uut. The two decays have very different lifetimes and decay energies and are also produced from two apparently different isomers of 274Rg. The first isomer decays by emission of an alpha particle with energy 10.03 MeV and has a lifetime of 7.16 ms. The other alpha decays with a lifetime of 1.63 s; the decay energy was not measured. An assignment to specific levels is not possible with the limited data available and further research is required.[15]

268Mt

The alpha decay spectrum for 268Mt appears to be complicated from the results of several experiments. Alpha particles of energies 10.28, 10.22 and 10.10 MeV have been observed, emitted from 268Mt atoms with half-lives of 42 ms, 21 ms and 102 ms respectively. The long-lived decay must be assigned to an isomeric level. The discrepancy between the other two half-lives has yet to be resolved. An assignment to specific levels is not possible with the data available and further research is required.[16]

Nuclear isomerism

270Mt

Two atoms of 270Mt have been identified in the decay chains of 278Uut. The two decays have very different lifetimes and decay energies and are also produced from two apparently different isomers in 274Rg. The first isomer decays by emission of a 10.03 MeV alpha particle with a lifetime 7.2 ms. The other decays by emitting an alpha particle with a lifetime of 1.63 s. An assignment to specific levels is not possible with the limited data available. Further research is required.

268Mt

The alpha decay spectrum for 268Mt appears to be complicated from the results of several experiments. Alpha lines of 10.28,10.22 and 10.10 MeV have been observed. Half-lives of 42 ms, 21 ms and 102 ms have been determined. The long-lived decay is associated with alpha particles of energy 10.10 MeV and must be assigned to an isomeric level. The discrepancy between the other two half-lives has yet to be resolved. An assignment to specific levels is not possible with the data available and further research is required.

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing meitnerium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
58Fe209Bi267Mt7.5 pb
59Co208Pb267Mt2.6 pb, 14.9 MeV

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

HIVAP = heavy-ion vaporisation statistical-evaporation model; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
243Am 30Si273Mt3n (270Mt)22 pbHIVAP[18]
243Am 28Si271Mt4n (267Mt)3 pbHIVAP[18]
249Bk 26Mg275Mt4n (271Mt)9.5 pbHIVAP[18]
254Es 22Ne276Mt4n (272Mt)8 pbHIVAP[18]
254Es 20Ne274Mt4-5n (270,269Mt)3 pbHIVAP[18]

References

  1. 1 2 Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  2. Krzysztof P. Rykaczewski (April 2012). "New results from DGFRS experiments performed using 48Ca beams on 243Am, 249Bk and 249Cf targets" (PDF). U.S. Department of Energy.
  3. Oganessian, Yu. Ts.; et al. (2010). "Synthesis of a New Element with Atomic Number Z = 117". Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  4. 1 2 Armbruster, Peter & Munzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  5. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  6. Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  7. Münzenberg, G.; et al. (1982). "Observation of one correlated α-decay in the reaction 58Fe on 209Bi→267109". Zeitschrift für Physik A. 309 (1): 89–90. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157.
  8. Münzenberg, G.; Hofmann, S.; Heßberger, F. P.; et al. (1988). "New results on element 109". Zeitschrift für Physik A. 330 (4): 435–436. Bibcode:1988ZPhyA.330..435M. doi:10.1007/BF01290131.
  9. Hofmann, S.; Heßberger, F. P.; Ninov, V.; et al. (1997). "Excitation function for the production of 265108 and 266109". Zeitschrift für Physik A. 358 (4): 377–378. Bibcode:1997ZPhyA.358..377H. doi:10.1007/s002180050343.
  10. Nelson, S. L.; Gregorich, K. E.; Dragojević, I.; et al. (2009). "Comparison of complementary reactions in the production of Mt". Physical Review C. 79 (2): 027605. Bibcode:2009PhRvC..79b7605N. doi:10.1103/PhysRevC.79.027605.
  11. 1 2 Zielinski P. M. et al. (2003). "The search for 271Mt via the reaction 238U + 37Cl", GSI Annual report. Retrieved on 2008-03-01
  12. Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  13. 1 2 Oganessian, Yu. Ts.; et al. (2010). "Synthesis of a New Element with Atomic Number Z = 117". Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  14. 1 2 3 Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "AIP Conference Proceedings". 912: 235. doi:10.1063/1.2746600. |chapter= ignored (help)
  15. 1 2 Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  16. 1 2 Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "The new element 111" (PDF). Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182.
  17. Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2008-06-06.
  18. 1 2 3 4 5 Wang, K.; et al. (2004). "A Proposed Reaction Channel for the Synthesis of the Superheavy Nucleus Z = 109". Chinese Physics Letters. 21 (3): 464–467. arXiv:nucl-th/0402065Freely accessible. Bibcode:2004ChPhL..21..464W. doi:10.1088/0256-307X/21/3/013.
Isotopes of hassium Isotopes of meitnerium Isotopes of darmstadtium
Table of nuclides
This article is issued from Wikipedia - version of the 12/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.