Matroid polytope

In mathematics, a matroid polytope, also called a matroid basis polytope (or basis matroid polytope) to distinguish it from other polytopes derived from a matroid, is a polytope constructed via the bases of a matroid. Given a matroid , the matroid polytope is the convex hull of the indicator vectors of the bases of .

Definition

Let be a matroid on elements. Given a basis of , the indicator vector of is

where is the standard th unit vector in . The matroid polytope is the convex hull of the set

Examples

Square pyramid
Octahedron
That is, all 2-element subsets of except . The corresponding indicator vectors of are
The matroid polytope of is
which is the square pyramid.

Properties

where is the ground set of the matroid and is the signed beta invariant of :

Related polytopes

Independence matroid polytope

The matroid independence polytope or independence matroid polytope is the convex hull of the set

The (basis) matroid polytope is a face of the independence matroid polytope. Given the rank of a matroid , the independence matroid polytope is equal to the polymatroid determined by .

Flag matroid polytope

The flag matroid polytope is another polytope constructed from the bases of matroids. A flag is a strictly increasing sequence

of finite sets.[4] Let be the cardinality of the set . Two matroids and are said to be concordant if their rank functions satisfy

Given pairwise concordant matroids on the ground set with ranks , consider the collection of flags where is a basis of the matroid and . Such a collection of flags is a flag matroid . The matroids are called the constituents of . For each flag in a flag matroid , let be the sum of the indicator vectors of each basis in

Given a flag matroid , the flag matroid polytope is the convex hull of the set

A flag matroid polytope can be written as a Minkowski sum of the (basis) matroid polytopes of the constituent matroids:[4]

References

  1. Grötschel, Martin (2004), "Cardinality homogeneous set systems, cycles in matroids, and associated polytopes", The Sharpest Cut: The Impact of Manfred Padberg and His Work, MPS/SIAM Ser. Optim., SIAM, Philadelphia, PA, pp. 99–120, MR 2077557. See in particular the remarks following Prop. 8.20 on p. 114.
  2. 1 2 Gelfand, I.M.; Goresky, R.M.; MacPherson, R.D.; Serganova, V.V. (1987). "Combinatorial geometries, convex polyhedra, and Schubert cells". Advances in Mathematics. 63 (3): 301316. doi:10.1016/0001-8708(87)90059-4.
  3. 1 2 Ardila, Federico; Benedetti, Carolina; Doker, Jeffrey (2010). "Matroid polytopes and their volumes". Discrete and Computational Geometry. 43 (4): 841–854. arXiv:0810.3947Freely accessible. doi:10.1007/s00454-009-9232-9.
  4. 1 2 Borovik, Alexandre V.; Gelfand, I.M.; White, Neil (2013). "Coxeter Matroids". Progress in Mathematics. 216. doi:10.1007/978-1-4612-2066-4.
This article is issued from Wikipedia - version of the 10/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.