Lockheed C-130 Hercules

C-130 Hercules
Straight-wing, four-engine turboprop-driven aircraft overflying water
USAF C-130E
Role Military transport aircraft
National origin United States
Manufacturer Lockheed
Lockheed Martin
First flight 23 August 1954
Status In service
Primary users United States Air Force
United States Marine Corps
Royal Air Force
Royal Canadian Air Force
Produced 1954–present
Number built Over 2,500 as of 2015[1]
Unit cost
C-130E $11.9 million[2]
C-130H $30.1 million[3]
Variants AC-130 Spectre/Spooky
Lockheed DC-130
Lockheed EC-130
Lockheed HC-130
Lockheed Martin KC-130
Lockheed LC-130
Lockheed MC-130
Lockheed WC-130
Lockheed L-100 Hercules
Lockheed Martin C-130J Super Hercules

The Lockheed C-130 Hercules is a four–engined turboprop military transport aircraft designed and built originally by Lockheed (now Lockheed Martin). Capable of using unprepared runways for takeoffs and landings, the C-130 was originally designed as a troop, medevac, and cargo transport aircraft. The versatile airframe has found uses in a variety of other roles, including as a gunship (AC-130), for airborne assault, search and rescue, scientific research support, weather reconnaissance, aerial refueling, maritime patrol, and aerial firefighting. It is now the main tactical airlifter for many military forces worldwide. Over forty variants and versions of the Hercules, including a civilian one marketed as the Lockheed L-100, operate in more than 60 nations.

The C-130 entered service with the U.S. in the 1950s, followed by Australia and others. During its years of service, the Hercules family has participated in numerous military, civilian and humanitarian aid operations. In 2007, the C-130 became the fifth aircraft—after the English Electric Canberra, B-52 Stratofortress, Tu-95 Bear, and KC-135 Stratotanker—to mark 50 years of continuous service with its original primary customer, in this case, the United States Air Force. The C-130 Hercules is the longest continuously produced military aircraft at over 60 years, with the updated Lockheed Martin C-130J Super Hercules being produced today.[4]

Design and development

Background and requirements

The Korean War, which began in June 1950, showed that World War II-era piston-engine transports—Fairchild C-119 Flying Boxcars, Douglas C-47 Skytrains and Curtiss C-46 Commandos—were inadequate for modern warfare. Thus, on 2 February 1951, the United States Air Force issued a General Operating Requirement (GOR) for a new transport to Boeing, Douglas, Fairchild, Lockheed, Martin, Chase Aircraft, North American, Northrop, and Airlifts Inc. The new transport would have a capacity of 92 passengers, 72 combat troops or 64 paratroopers in a cargo compartment that was approximately 41 feet (12 m) long, 9 feet (2.7 m) high, and 10 feet (3.0 m) wide. Unlike transports derived from passenger airliners, it was to be designed from the ground-up as a combat transport with loading from a hinged loading ramp at the rear of the fuselage.

A key feature was the introduction of the Allison T56 turboprop powerplant, first developed specifically for the C-130. At the time, the turboprop was a new application of turbine engines that used exhaust gases to turn a propeller, which offered greater range at propeller-driven speeds compared to pure turbojets, which were faster but consumed more fuel. As was the case on helicopters of that era, such as the UH-1 Huey, turboshafts produced much more power for their weight than piston engines. Lockheed would subsequently use the same engines and technology in the Lockheed L-188 Electra. That aircraft failed financially in its civilian configuration but was successfully adapted into the Lockheed P-3 Orion maritime patrol and submarine attack aircraft where the efficiency and endurance of turboprops excelled.

Design phase

The Hercules resembled a larger four-engine brother to the C-123 Provider with a similar wing and cargo ramp layout that evolved from the Chase XCG-20 Avitruc, which in turn, was first designed and flown as a cargo glider in 1947.[5] The Boeing C-97 Stratofreighter also had a rear ramp, which made it possible to drive vehicles onto the plane (also possible with forward ramp on a C-124). The ramp on the Hercules was also used to airdrop cargo, which included low-altitude extraction for Sheridan tanks and even dropping large improvised "daisy cutter" bombs.

The new Lockheed cargo plane design possessed a range of 1,100 nmi (1,270 mi; 2,040 km), takeoff capability from short and unprepared strips, and the ability to fly with one engine shut down. Fairchild, North American, Martin, and Northrop declined to participate. The remaining five companies tendered a total of ten designs: Lockheed two, Boeing one, Chase three, Douglas three, and Airlifts Inc. one. The contest was a close affair between the lighter of the two Lockheed (preliminary project designation L-206) proposals and a four-turboprop Douglas design.

The Lockheed design team was led by Willis Hawkins, starting with a 130-page proposal for the Lockheed L-206.[6] Hall Hibbard, Lockheed vice president and chief engineer, saw the proposal and directed it to Kelly Johnson, who did not care for the low-speed, unarmed aircraft, and remarked, "If you sign that letter, you will destroy the Lockheed Company."[6] Both Hibbard and Johnson signed the proposal and the company won the contract for the now-designated Model 82 on 2 July 1951.[7]

The first flight of the YC-130 prototype was made on 23 August 1954 from the Lockheed plant in Burbank, California. The aircraft, serial number 53-3397, was the second prototype, but the first of the two to fly. The YC-130 was piloted by Stanley Beltz and Roy Wimmer on its 61-minute flight to Edwards Air Force Base; Jack Real and Dick Stanton served as flight engineers. Kelly Johnson flew chase in a Lockheed P2V Neptune.[8]

After the two prototypes were completed, production began in Marietta, Georgia, where over 2,300 C-130s have been built through 2009.[9]

The initial production model, the C-130A, was powered by Allison T56-A-9 turboprops with three-blade propellers and originally equipped with the blunt nose of the prototypes. Deliveries began in December 1956, continuing until the introduction of the C-130B model in 1959. Some A-models were equipped with skis and re-designated C-130D. As the C-130A became operational with Tactical Air Command (TAC), the C-130's lack of range became apparent and additional fuel capacity was added in the form of external pylon-mounted tanks at the end of the wings.

Improved versions

A Michigan Air National Guard C-130E dispatches its flares during a low-level training mission

The C-130B model was developed to complement the A-models that had previously been delivered, and incorporated new features, particularly increased fuel capacity in the form of auxiliary tanks built into the center wing section and an AC electrical system. Four-bladed Hamilton Standard propellers replaced the Aeroproducts three-blade propellers that distinguished the earlier A-models. The C-130B had ailerons with boost increased from 2,050 psi (14.1 MPa) to 3,000 psi (21 MPa), as well as uprated engines and four-blade propellers that were standard until the J-model's introduction.

An electronic reconnaissance variant of the C-130B was designated C-130B-II. A total of 13 aircraft were converted. The C-130B-II was distinguished by its false external wing fuel tanks, which were disguised signals intelligence (SIGINT) receiver antennas. These pods were slightly larger than the standard wing tanks found on other C-130Bs. Most aircraft featured a swept blade antenna on the upper fuselage, as well as extra wire antennas between the vertical fin and upper fuselage not found on other C-130s. Radio call numbers on the tail of these aircraft were regularly changed so as to confuse observers and disguise their true mission.

The extended-range C-130E model entered service in 1962 after it was developed as an interim long-range transport for the Military Air Transport Service. Essentially a B-model, the new designation was the result of the installation of 1,360 US gal (5,150 L) Sargent Fletcher external fuel tanks under each wing's midsection and more powerful Allison T56-A-7A turboprops. The hydraulic boost pressure to the ailerons was reduced back to 2,050 psi (14.1 MPa) as a consequence of the external tanks' weight in the middle of the wingspan. The E model also featured structural improvements, avionics upgrades and a higher gross weight. Australia took delivery of 12 C130E Hercules during 1966–67 to supplement the 12 C-130A models already in service with the RAAF. Sweden and Spain fly the TP-84T version of the C-130E fitted for aerial refueling capability.

The KC-130 tankers, originally C-130F procured for the US Marine Corps (USMC) in 1958 (under the designation GV-1) are equipped with a removable 3,600 US gal (13,626 L) stainless steel fuel tank carried inside the cargo compartment. The two wing-mounted hose and drogue aerial refueling pods each transfer up to 300 US gal per minute (19 L per second) to two aircraft simultaneously, allowing for rapid cycle times of multiple-receiver aircraft formations, (a typical tanker formation of four aircraft in less than 30 minutes). The US Navy's C-130G has increased structural strength allowing higher gross weight operation.

More improvements

The C-130H model has updated Allison T56-A-15 turboprops, a redesigned outer wing, updated avionics and other minor improvements. Later H models had a new, fatigue-life-improved, center wing that was retrofitted to many earlier H-models. For structural reasons, some models are required to land with certain amounts of fuel when carrying heavy cargo, reducing usable range.[10] The H model remains in widespread use with the United States Air Force (USAF) and many foreign air forces. Initial deliveries began in 1964 (to the RNZAF), remaining in production until 1996. An improved C-130H was introduced in 1974, with Australia purchasing 12 of type in 1978 to replace the original 12 C-130A models, which had first entered RAAF Service in 1958.

The United States Coast Guard employs the HC-130H for long-range search and rescue, drug interdiction, illegal migrant patrols, homeland security, and logistics.

C-130H models produced from 1992 to 1996 were designated as C-130H3 by the USAF. The "3" denoting the third variation in design for the H series. Improvements included ring laser gyros for the INUs, GPS receivers, a partial glass cockpit (ADI and HSI instruments), a more capable APN-241 color radar, night vision device compatible instrument lighting, and an integrated radar and missile warning system. The electrical system upgrade included Generator Control Units (GCU) and Bus Switching units (BSU) to provide stable power to the more sensitive upgraded components.[11]

Royal Air Force C-130K (C.3)

The equivalent model for export to the UK is the C-130K, known by the Royal Air Force (RAF) as the Hercules C.1. The C-130H-30 (Hercules C.3 in RAF service) is a stretched version of the original Hercules, achieved by inserting a 100 in (2.54 m) plug aft of the cockpit and an 80 in (2.03 m) plug at the rear of the fuselage. A single C-130K was purchased by the Met Office for use by its Meteorological Research Flight, where it was classified as the Hercules W.2. This aircraft was heavily modified (with its most prominent feature being the long red and white striped atmospheric probe on the nose and the move of the weather radar into a pod above the forward fuselage). This aircraft, named Snoopy, was withdrawn in 2001 and was then modified by Marshall of Cambridge Aerospace as flight-testbed for the A400M turbine engine, the TP400. The C-130K is used by the RAF Falcons for parachute drops. Three C-130K (Hercules C Mk.1P) were upgraded and sold to the Austrian Air Force in 2002.[12]

Later models

The MC-130E Combat Talon was developed for the USAF during the Vietnam War to support special operations missions in Southeast Asia, and led to both the MC-130H Combat Talon II as well as a family of other special missions aircraft. 37 of the earliest models currently operating with the Air Force Special Operations Command (AFSOC) are scheduled to be replaced by new-production MC-130J versions. The EC-130 Commando Solo is another special missions variant within AFSOC, albeit operated solely by an AFSOC-gained wing in the Pennsylvania Air National Guard, and is a psychological operations/information operations (PSYOP/IO) platform equipped as an aerial radio station and television stations able to transmit messaging over commercial frequencies. Other versions of the EC-130, most notably the EC-130H Compass Call, are also special variants, but are assigned to the Air Combat Command (ACC). The AC-130 gunship was first developed during the Vietnam War to provide close air support and other ground-attack duties.

USAF HC-130P refuels a HH-60G Pavehawk helicopter

The HC-130 is a family of long-range search and rescue variants used by the USAF and the U.S. Coast Guard. Equipped for deep deployment of Pararescuemen (PJs), survival equipment, and (in the case of USAF versions) aerial refueling of combat rescue helicopters, HC-130s are usually the on-scene command aircraft for combat SAR missions (USAF only) and non-combat SAR (USAF and USCG). Early USAF versions were also equipped with the Fulton surface-to-air recovery system, designed to pull a person off the ground using a wire strung from a helium balloon. The John Wayne movie The Green Berets features its use. The Fulton system was later removed when aerial refueling of helicopters proved safer and more versatile. The movie The Perfect Storm depicts a real life SAR mission involving aerial refueling of a New York Air National Guard HH-60G by a New York Air National Guard HC-130P.

The C-130R and C-130T are U.S. Navy and USMC models, both equipped with underwing external fuel tanks. The USN C-130T is similar, but has additional avionics improvements. In both models, aircraft are equipped with Allison T56-A-16 engines. The USMC versions are designated KC-130R or KC-130T when equipped with underwing refueling pods and pylons and are fully night vision system compatible.

The RC-130 is a reconnaissance version. A single example is used by the Islamic Republic of Iran Air Force, the aircraft having originally been sold to the former Imperial Iranian Air Force.

The Lockheed L-100 (L-382) is a civilian variant, equivalent to a C-130E model without military equipment. The L-100 also has two stretched versions.

Next generation

In the 1970s, Lockheed proposed a C-130 variant with turbofan engines rather than turboprops, but the U.S. Air Force preferred the takeoff performance of the existing aircraft. In the 1980s, the C-130 was intended to be replaced by the Advanced Medium STOL Transport project. The project was canceled and the C-130 has remained in production.

Building on lessons learned, Lockheed Martin modified a commercial variant of the C-130 into a High Technology Test Bed (HTTB). This test aircraft set numerous short takeoff and landing performance records and significantly expanded the database for future derivatives of the C-130.[13] Modifications made to the HTTB included extended chord ailerons, a long chord rudder, fast-acting double-slotted trailing edge flaps, a high-camber wing leading edge extension, a larger dorsal fin and dorsal fins, the addition of three spoiler panels to each wing upper surface, a long-stroke main and nose landing gear system, and changes to the flight controls and a change from direct mechanical linkages assisted by hydraulic boost, to fully powered controls, in which the mechanical linkages from the flight station controls operated only the hydraulic control valves of the appropriate boost unit.[14] The HTTB first flew on 19 June 1984, with civil registration of N130X. After demonstrating many new technologies, some of which were applied to the C-130J, the HTTB was lost in a fatal accident on 3 February 1993, at Dobbins Air Reserve Base, in Marietta, Georgia.[15] The crash was attributed to disengagement of the rudder fly-by-wire flight control system, resulting in a total loss of rudder control capability while conducting ground minimum control speed tests (Vmcg). The disengagement was a result of the inadequate design of the rudder's integrated actuator package by its manufacturer; the operator's insufficient system safety review failed to consider the consequences of the inadequate design to all operating regimes. A factor which contributed to the accident was the flight crew's lack of engineering flight test training.[16]

In the 1990s, the improved C-130J Super Hercules was developed by Lockheed (later Lockheed Martin). This model is the newest version and the only model in production. Externally similar to the classic Hercules in general appearance, the J model has new turboprop engines, six-bladed propellers, digital avionics, and other new systems.[17]

Upgrades and changes

In 2000, Boeing was awarded a US$1.4 billion contract to develop an Avionics Modernization Program kit for the C-130. The program was beset with delays and cost overruns until project restructuring in 2007.[18] On 2 September 2009, Bloomberg news reported that the planned Avionics Modernization Program (AMP) upgrade to the older C-130s would be dropped to provide more funds for the F-35, CV-22 and airborne tanker replacement programs.[19] However, in June 2010, Department of Defense approved funding for the initial production of the AMP upgrade kits.[20][21] Under the terms of this agreement, the USAF has cleared Boeing to begin low-rate initial production (LRIP) for the C-130 AMP. A total of 198 aircraft are expected to feature the AMP upgrade. The current cost per aircraft is US$14 million although Boeing expects that this price will drop to US$7 million for the 69th aircraft.[18]

In the 2000s, Lockheed Martin and the U.S. Air Force began outfitting and retrofitting C-130s with the eight-blade NP2000 propellers.[22]

An engine enhancement program saving fuel and providing lower temperatures in the T56 engine has been approved, and the US Air Force expects to save $2 billion and extend the fleet life.[23]

Replacement

In October 2010, the Air Force released a capabilities request for information (CRFI) for the development of a new airlifter to replace the C-130. The new aircraft is to carry a 190 percent greater payload and assume the mission of mounted vertical maneuver (MVM). The greater payload and mission would enable it to carry medium-weight armored vehicles and drop them off at locations without long runways. Various options are being considered, including new or upgraded fixed-wing designs, rotorcraft, tiltrotors, or even an airship. Development could start in 2014, and become operational by 2024. The C-130 fleet of around 450 planes would be replaced by only 250 aircraft.[24] The Air Force had attempted to replace the C-130 in the 1970s through the Advanced Medium STOL Transport project, which resulted in the C-17 Globemaster III that instead replaced the C-141 Starlifter.[25] The Air Force Research Laboratory funded Lockheed and Boeing demonstrators for the Speed Agile concept, which had the goal of making a STOL aircraft that can take off and land at speeds as low as 70 kn (130 km/h; 81 mph) on airfields less than 2,000 ft (610 m) long and cruise at Mach 0.8-plus. Boeing's design used upper-surface blowing from embedded engines on the inboard wing and blown flaps for circulation control on the outboard wing. Lockheed's design also used blown flaps outboard, but inboard used patented reversing ejector nozzles. Boeing's design completed over 2,000 hours of windtunnel tests in late 2009. It was a 5 percent-scale model of a narrowbody design with a 55,000 lb (25,000 kg) payload. When the AFRL increased the payload requirement to 65,000 lb (29,000 kg), they tested a 5% scale model of a widebody design with a 303,000 lb (137,000 kg) take-off gross weight and an "A400M-size" 158 in (4.0 m) wide cargo box. It would be powered by four IAE V2533 turbofans.[26] In August 2011, the AFRL released pictures of the Lockheed Speed Agile concept demonstrator. A 23% scale model went through wind tunnel tests to demonstrate its hybrid powered lift, which combines a low drag airframe with simple mechanical assembly to reduce weight and better aerodynamics. The model had four engines, including two Williams FJ44 turbofans.[25][27] On 26 March 2013, Boeing was granted a patent for its swept-wing powered lift aircraft.[28]

As of January 2014, Air Mobility Command, Air Force Materiel Command and the Air Force Research Lab are in the early stages of defining requirements for the C-X next generation airlifter program to replace both the C-130 and C-17. An aircraft would be produced from the early 2030s to the 2040s. If requirements are decided for operating in contested airspace, Air Force procurement of C-130s would end by the end of the decade to not have them serviceable by the 2030s and operated when they can't perform in that environment. Development of the airlifter depends heavily on the Army's "tactical and operational maneuver" plans. Two different cargo planes could still be created to separately perform tactical and strategic missions, but which course to pursue is to be decided before C-17s need to be retired.[29]

Operational history

Military

USMC KC-130F Hercules performing takeoffs and landings aboard the aircraft carrier Forrestal in 1963. The aircraft is now displayed at the National Museum of Naval Aviation.

The first production aircraft, C-130As were first delivered beginning in 1956 to the 463d Troop Carrier Wing at Ardmore AFB, Oklahoma and the 314th Troop Carrier Wing at Sewart AFB, Tennessee. Six additional squadrons were assigned to the 322d Air Division in Europe and the 315th Air Division in the Far East. Additional aircraft were modified for electronics intelligence work and assigned to Rhein-Main Air Base, Germany while modified RC-130As were assigned to the Military Air Transport Service (MATS) photo-mapping division.

In 1958, a U.S. reconnaissance C-130A-II of the 7406th Support Squadron was shot down over Armenia by MiG-17s.[30]

Australia became the first non-American force to operate the C-130A Hercules with 12 examples being delivered from late 1958. These aircraft were fitted with AeroProducts three-blade, 15-foot diameter propellers. The Royal Canadian Air Force became another early user with the delivery of four B-models (Canadian designation C-130 Mk I) in October / November 1960.[31]

In 1963, a Hercules achieved and still holds the record for the largest and heaviest aircraft to land on an aircraft carrier.[32] During October and November that year, a USMC KC-130F (BuNo 149798), loaned to the U.S. Naval Air Test Center, made 29 touch-and-go landings, 21 unarrested full-stop landings and 21 unassisted take-offs on Forrestal at a number of different weights.[33] The pilot, LT (later RADM) James H. Flatley III, USN, was awarded the Distinguished Flying Cross for his role in this test series. The tests were highly successful, but the idea was considered too risky for routine "Carrier Onboard Delivery" (COD) operations. Instead, the Grumman C-2 Greyhound was developed as a dedicated COD aircraft. The Hercules used in the test, most recently in service with Marine Aerial Refueler Squadron 352 (VMGR-352) until 2005, is now part of the collection of the National Museum of Naval Aviation at NAS Pensacola, Florida.

In 1964, C-130 crews from the 6315th Operations Group at Naha Air Base, Okinawa commenced forward air control (FAC; "Flare") missions over the Ho Chi Minh Trail in Laos supporting USAF strike aircraft. In April 1965 the mission was expanded to North Vietnam where C-130 crews led formations of B-57 bombers on night reconnaissance/strike missions against communist supply routes leading to South Vietnam. In early 1966 Project Blind Bat/Lamplighter was established at Ubon RTAFB, Thailand. After the move to Ubon the mission became a four-engine FAC mission with the C-130 crew searching for targets then calling in strike aircraft. Another little-known C-130 mission flown by Naha-based crews was Operation Commando Scarf, which involved the delivery of chemicals onto sections of the Ho Chi Minh Trail in Laos that were designed to produce mud and landslides in hopes of making the truck routes impassable.

In November 1964, on the other side of the globe, C-130Es from the 464th Troop Carrier Wing but loaned to 322d Air Division in France, flew one of the most dramatic missions in history in the former Belgian Congo. After communist Simba rebels took white residents of the city of Stanleyville hostage, the U.S. and Belgium developed a joint rescue mission that used the C-130s to airlift and then drop and air-land a force of Belgian paratroopers to rescue the hostages. Two missions were flown, one over Stanleyville and another over Paulis during Thanksgiving weeks.[34] The headline-making mission resulted in the first award of the prestigious MacKay Trophy to C-130 crews.

In the Indo-Pakistani War of 1965, as a desperate measure the transport No. 6 Squadron of the Pakistan Air Force modified its entire small fleet of C-130Bs for use as heavy bombers, capable of carrying up to 20,000 lb (9,072 kg) of bombs on pallets. These improvised bombers were used to hit Indian targets such as bridges, heavy artillery positions, tank formations and troop concentrations.[35][36] Some C-130s even flew with anti-aircraft guns fitted on their ramp, apparently shooting down some 17 aircraft and damaging 16 others.[37]

The C-130 Hercules were used in the Battle of Kham Duc in 1968, when the North Vietnamese Army forced U.S.-led forces to abandon the Kham Duc Special Forces Camp.

In October 1968, a C-130Bs from the 463rd Tactical Airlift Wing dropped a pair of M-121 10,000 pound bombs that had been developed for the massive B-36 bomber but had never been used. The U.S. Army and U.S. Air Force resurrected the huge weapons as a means of clearing landing zones for helicopters and in early 1969 the 463rd commenced Commando Vault missions. Although the stated purpose of COMMANDO VAULT was to clear LZs, they were also used on enemy base camps and other targets.

During the late 1960s, the U.S. was eager to get information on Chinese nuclear capabilities. After the failure of the Black Cat Squadron to plant operating sensor pods near the Lop Nur Nuclear Weapons Test Base using a Lockheed U-2, the CIA developed a plan, named Heavy Tea, to deploy two battery-powered sensor pallets near the base. To deploy the pallets, a Black Bat Squadron crew was trained in the U.S. to fly the C-130 Hercules. The crew of 12, led by Col Sun Pei Zhen, took off from Takhli Royal Thai Air Force Base in an unmarked U.S. Air Force C-130E on 17 May 1969. Flying for six and a half hours at low altitude in the dark, they arrived over the target and the sensor pallets were dropped by parachute near Anxi in Gansu province. After another six and a half hours of low altitude flight, they arrived back at Takhli. The sensors worked and uploaded data to a U.S. intelligence satellite for six months, before their batteries wore out. The Chinese conducted two nuclear tests, on 22 September 1969 and 29 September 1969, during the operating life of the sensor pallets. Another mission to the area was planned as Operation Golden Whip, but was called off in 1970.[38] It is most likely that the aircraft used on this mission was either C-130E serial number 64-0506 or 64-0507 (cn 382-3990 and 382-3991). These two aircraft were delivered to Air America in 1964.[39] After being returned to the U.S. Air Force sometime between 1966 and 1970, they were assigned the serial numbers of C-130s that had been destroyed in accidents. 64-0506 is now flying as 62-1843, a C-130E that crashed in Vietnam on 20 December 1965 and 64-0507 is now flying as 63-7785, a C-130E that had crashed in Vietnam on 17 June 1966.[40]

The A-model continued in service through the Vietnam War, where the aircraft assigned to the four squadrons at Naha AB, Okinawa and one at Tachikawa Air Base, Japan performed yeoman's service, including operating highly classified special operations missions such as the BLIND BAT FAC/Flare mission and FACT SHEET leaflet mission over Laos and North Vietnam. The A-model was also provided to the South Vietnamese Air Force as part of the Vietnamization program at the end of the war, and equipped three squadrons based at Tan Son Nhut AFB. The last operator in the world is the Honduran Air Force, which is still flying one of five A model Hercules (FAH 558, c/n 3042) as of October 2009.[41] As the Vietnam War wound down, the 463rd Troop Carrier/Tactical Airlift Wing B-models and A-models of the 374th Tactical Airlift Wing were transferred back to the United States where most were assigned to Air Force Reserve and Air National Guard units.

U.S. Marines disembark from C-130 transports at the Da Nang Airbase on 8 March 1965

Another prominent role for the B model was with the United States Marine Corps, where Hercules initially designated as GV-1s replaced C-119s. After Air Force C-130Ds proved the type's usefulness in Antarctica, the U.S. Navy purchased a number of B-models equipped with skis that were designated as LC-130s. C-130B-II electronic reconnaissance aircraft were operated under the SUN VALLEY program name primarily from Yokota Air Base, Japan. All reverted to standard C-130B cargo aircraft after their replacement in the reconnaissance role by other aircraft.

The C-130 was also used in the 1976 Entebbe raid in which Israeli commando forces carried a surprise assault to rescue 103 passengers of an airliner hijacked by Palestinian and German terrorists at Entebbe Airport, Uganda. The rescue force — 200 soldiers, jeeps, and a black Mercedes-Benz (intended to resemble Ugandan Dictator Idi Amin's vehicle of state) — was flown over 2,200 nmi (4,074 km; 2,532 mi) almost entirely at an altitude of less than 100 ft (30 m) from Israel to Entebbe by four Israeli Air Force (IAF) Hercules aircraft without mid-air refueling (on the way back, the planes refueled in Nairobi, Kenya).

During the Falklands War (Spanish: Guerra de las Malvinas) of 1982, Argentine Air Force C-130s undertook highly dangerous, daily re-supply night flights as blockade runners to the Argentine garrison on the Falkland Islands. They also performed daylight maritime survey flights. One was lost during the war. Argentina also operated two KC-130 tankers during the war, and these refueled both the Douglas A-4 Skyhawks and Navy Dassault-Breguet Super Étendards; some C-130s were modified to operate as bombers with bomb-racks under their wings. The British also used RAF C-130s to support their logistical operations.

USMC C-130T Fat Albert performing a rocket-assisted takeoff (RATO)

During the Gulf War of 1991 (Operation Desert Storm), the C-130 Hercules was used operationally by the U.S. Air Force, U.S. Navy and U.S. Marine Corps, along with the air forces of Australia, New Zealand, Saudi Arabia, South Korea and the UK. The MC-130 Combat Talon variant also made the first attacks using the largest conventional bombs in the world, the BLU-82 "Daisy Cutter" and GBU-43/B "Massive Ordnance Air Blast" bomb, (MOAB). Daisy Cutters were used to clear landing zones and to eliminate mine fields. The weight and size of the weapons make it impossible or impractical to load them on conventional bombers. The GBU-43/B MOAB is a successor to the BLU-82 and can perform the same function, as well as perform strike functions against hardened targets in a low air threat environment.

Since 1992, two successive C-130 aircraft named Fat Albert have served as the support aircraft for the U.S. Navy Blue Angels flight demonstration team. Fat Albert I was a TC-130G (151891),[42] while Fat Albert II is a C-130T (164763).[43] Although Fat Albert supports a Navy squadron, it is operated by the U.S. Marine Corps (USMC) and its crew consists solely of USMC personnel. At some air shows featuring the team, Fat Albert takes part, performing flyovers. Until 2009, it also demonstrated its rocket-assisted takeoff (RATO) capabilities; these ended due to dwindling supplies of rockets.[44]

The AC-130 also holds the record for the longest sustained flight by a C-130. From 22 to 24 October 1997, two AC-130U gunships flew 36 hours nonstop from Hurlburt Field Florida to Taegu (Daegu), South Korea while being refueled seven times by KC-135 tanker aircraft. This record flight shattered the previous record longest flight by over 10 hours while the two gunships took on 410,000 lb (190,000 kg) of fuel. The gunship has been used in every major U.S. combat operation since Vietnam, except for Operation El Dorado Canyon, the 1986 attack on Libya.[45]

C-130 Hercules performs a tactical landing on a dirt strip

During the invasion of Afghanistan in 2001 and the ongoing support of the International Security Assistance Force (Operation Enduring Freedom), the C-130 Hercules has been used operationally by Australia, Belgium, Canada, Denmark, France, Italy, the Netherlands, New Zealand, Norway, Portugal, South Korea, Spain, the UK and the United States.

During the 2003 invasion of Iraq (Operation Iraqi Freedom), the C-130 Hercules was used operationally by Australia, the UK and the United States. After the initial invasion, C-130 operators as part of the Multinational force in Iraq used their C-130s to support their forces in Iraq.

Since 2004, the Pakistan Air Force has employed C-130s in the War in North-West Pakistan. Some variants had forward looking infrared (FLIR Systems Star Safire III EO/IR) sensor balls, to enable close tracking of Islamist militants.[46]

Civilian

A C-130E fitted with a MAFFS-1 dropping fire retardant

The U.S. Forest Service developed the Modular Airborne FireFighting System for the C-130 in the 1970s, which allows regular aircraft to be temporarily converted to an airtanker for fighting wildfires.[47] In the late 1980s, 22 retired USAF C-130As were removed from storage at Davis-Monthan Air Force Base and transferred to the U.S. Forest Service who then sold them to six private companies to be converted into air tankers (see U.S. Forest Service airtanker scandal). After one of these aircraft crashed due to wing separation in flight as a result of fatigue stress cracking, the entire fleet of C-130A air tankers was permanently grounded in 2004 (see 2002 airtanker crashes). C-130s have been used to spread chemical dispersants onto the massive oil slick in the Gulf Coast in 2010.[48]

A recent development of a C-130–based airtanker is the Retardant Aerial Delivery System developed by Coulson Aviation USA. The system consists of a C-130H/Q retrofitted with an in-floor discharge system, combined with a removable 3,500- or 4,000-gallon water tank. The combined system is FAA certified.[49]

Variants

C-130H Hercules flight deck
A U.S. JC-130 aircraft retrieving a reconnaissance satellite film capsule under parachute.
C-130s from the: U.S., Canada, Australia and Israel (foreground to background)
RAAF C-130J-30 at Point Cook, 2006
Brazilian Air Force C-130 (L-382)
For civilian versions, see Lockheed L-100 Hercules.

Significant military variants of the C-130 include:

C-130A/B/E/F/G/H/K/T
Tactical airlifter basic models
C-130A-II Dreamboat
Early version Electronic Intelligence/Signals Intelligence (ELINT/SIGINT) aircraft[50]
C-130J Super Hercules
Tactical airlifter, with new engines, avionics, and updated systems
C-130K
Designation for RAF Hercules C1/W2/C3 aircraft (C-130Js in RAF service are the Hercules C.4 and Hercules C.5)
AC-130A/E/H/J/U/W
Gunship variants
C-130D/D-6
Ski-equipped version for snow and ice operations United States Air Force / Air National Guard
CC-130E/H/J Hercules
Designation for Canadian Armed Forces / Royal Canadian Air Force Hercules aircraft. U.S. Air Force used the CC-130J designation to differentiate the standard C-130J variant from the "stretched" C-130J (company designation C-130J-30).
DC-130A/E/H
USAF and USN Drone control
EC-130
EC-130E/J Commando Solo – USAF / Air National Guard psychological operations version
EC-130E Airborne Battlefield Command and Control Center (ABCCC) – USAF procedural air-to-ground attack control, also provided NRT threat updates
EC-130E Rivet Rider – Airborne psychological warfare aircraft
EC-130H Compass CallElectronic warfare and electronic attack.[51]
EC-130V – Airborne early warning and control (AEW&C) variant used by USCG for counter-narcotics missions[52]
GC-130
Permanently grounded "Static Display"
HC-130
HC-130B/E/H – Early model combat search and rescue
HC-130P/N Combat King – USAF aerial refueling tanker and combat search and rescue
HC-130J Combat King II – Next generation combat search and rescue tanker
HC-130H/J – USCG long-range surveillance and search and rescue
JC-130
Temporary conversion for flight test operations; Also used to recover film from American spy satellites.
KC-130F/R/T/J
United States Marine Corps aerial refueling tanker and tactical airlifter
LC-130F/H/R
USAF / Air National Guard – Ski-equipped version for Arctic and Antarctic support operations; LC-130F previously operated by USN
MC-130
MC-130E/H Combat Talon I/IISpecial operations infiltration/extraction variant
MC-130W Combat Spear/Dragon Spear – Special operations tanker/gunship[53]
MC-130P Combat Shadow – Special operations tanker
MC-130J Commando II (formerly Combat Shadow II) – Special operations tanker Air Force Special Operations Command[54]
YMC-130H – Modified aircraft under Operation Credible Sport for second Iran hostage crisis rescue attempt
NC-130
Permanent conversion for flight test operations
PC-130/C-130-MP
Maritime patrol
RC-130A/S
Surveillance aircraft for reconnaissance
SC-130J Sea Herc
Proposed maritime patrol version of the C-130J, designed for coastal surveillance and anti-submarine warfare.[55][56]
TC-130
Aircrew training
VC-130H
VIP transport
WC-130A/B/E/H/J
Weather reconnaissance ("Hurricane Hunter") version for USAF / Air Force Reserve Command's 53d Weather Reconnaissance Squadron in support of the National Weather Service's National Hurricane Center

Operators

Military operators of the C-130 Hercules aircraft;
  Current operators
  Former operators
C-130H used by the Egyptian Air Force.
C-130 Saudi Air Force

Accidents

The C-130 Hercules has had a low accident rate in general. The Royal Air Force recorded an accident rate of about one aircraft loss per 250,000 flying hours over the last 40 years, placing it behind Vickers VC10s and Lockheed TriStars with no flying losses.[57] USAF C-130A/B/E-models had an overall attrition rate of 5% as of 1989 as compared to 1-2% for commercial airliners in the U.S., according to the NTSB, 10% for B-52 bombers, and 20% for fighters (F-4, F-111), trainers (T-37, T-38), and helicopters (H-3).[58]

A total of 70 aircraft were lost by the U.S. Air Force and the U.S. Marine Corps during combat operations in the Vietnam War in Southeast Asia. By the nature of the Hercules' worldwide service, the pattern of losses provides an interesting barometer of the global hot spots over the past 50 years.[59]

Aircraft on display

Argentina

Australia

Canada

Colombia

Indonesia

Norway

Saudi Arabia

United Kingdom

United States

Specifications (C-130H)

A Hercules deploying flares, sometimes referred to as Angel Flares due to the characteristic pattern.
Cargo compartment of a Swedish Air Force C-130

Data from USAF C-130 Hercules fact sheet,[79] International Directory of Military Aircraft,[80] Complete Encyclopedia of World Aircraft,[81] Encyclopedia of Modern Military Aircraft[82]

General characteristics

Performance

Avionics

See also

Related development
Aircraft of comparable role, configuration and era
Related lists

References

Notes

  1. The aircrew of "Spare 617" were: Capt. William Caldwell, pilot; Lt. John Hering, co-pilot; Lt. Richard A. Lenz, navigator; Tech. Sgt. Jon Sanders, flight engineer, loadmasters Tech. Sgt. Charlie Shaub and A1C Dave McAleece

Citations

  1. "Family Ties: Three Generations Contribute to Hercules Legacy". Retrieved 8 July 2015.
  2. "C-130 Hercules". U.S. Air Force. United States Air Force. Retrieved 29 September 2015.
  3. "C-130 Hercules". Retrieved 4 July 2015.
  4. "C-130 aircraft designed in the 1950s still delivers". 29 December 2015. Retrieved 2 January 2016.
  5. "Chase XCG-20 Avitruc." globalsecurity.org. Retrieved: 2 October 2010.
  6. 1 2 Rhodes, Jeff. "Willis Hawkins and the Genesis of the Hercules." Code One Magazine, Volume 19, Issue 3, 2004.
  7. Boyne, Walter J. Beyond the Horizons: The Lockheed Story. New York: St. Martin's Press, 1998. ISBN 978-0-312-19237-2.
  8. Dabney, Joseph E. A. "Mating of the Jeep, the Truck, and the Airplane." lockheedmartin.com, 2004. Excerpted from HERK: Hero of the Skies in Lockheed Martin Service News, Lockheed Martin Air Mobility Support Volume 29, Issue 2, p. 3.
  9. Olausson 2009, p. 129.
  10. Cassidy, J. "C-130 Transportability of Army Vehicles" page 3. Defense Technical Information Center , 2001
  11. Petrescu, Relly Victoria; Petrescu, Florian Ion (2013). Lockheed Martin. Germany: Books on Demand GmBH, Norderstedt. p. 11. ISBN 978-3-8482-6053-9. Retrieved 2016-07-07.
  12. "C-130K in the Austrian Air Force." doppeladler.com. Retrieved: 2 October 2010.
  13. NASA and Lockheed Martin Partners In C-130 Technology Retrieved 21 May 2013.
  14. The High Technology Test Bed Lockheed Service News Vol. 12 No. 3, September 1985. Retrieved 21 May 2013.
  15. Norton, Bill (2002). STOL Progenitors: The Technology Path to a Large STOL Aircraft and the C-17A. Reston, Virginia: American Institute of Aeronautics and Astronautics. ISBN 1-56347-538-3.
  16. ASN Aircraft Accident Retrieved 21 May 2013.
  17. NurW. "DEFENSE STUDIES". Retrieved 4 July 2015.
  18. 1 2 Trimble, Stephen. "Boeing outlines C-130H and KC-10 cockpit upgrades." Flightglobal. Retrieved: 2 October 2010.
  19. Capaccio, Tony. "Air Force Would Cancel Boeing C-130 Upgrade, 15 Other Programs." Bloomberg, 2 September 2009. Retrieved 2 October 2010.
  20. Wall, Robert. "Pentagon Approves C-130 AMP Production." Aviation Week, 25 June 2010.
  21. "Boeing C-130 Avionics Modernization Program to Enter Production." Boeing, 24 June 2010.
  22. "AF.MIL". Retrieved 11 July 2016.
  23. "NOAA 'Hurricane Hunters' First To Get T56 Series 3.5 Engine Enhancement" Aero News, November 14, 2013. Accessed: December 1, 2013.
  24. USAF asks industry to answer C-130 replacement questions - Flightglobal.com, 22 October 2010
  25. 1 2 Lockheed’s stealth C-130 successor revealed - Flightglobal.com, 13 September 2011
  26. Fast STOL - Lockheed's Speed Agile - Aviationweek.com, 15 October 2010
  27. Lockheed’s New STOL Airlifter Design - Defensetech.org, 15 September 2011
  28. Boeing awarded patent for Speed Agile stealth transport concept - Flightglobal.com, 2 April 2013
  29. Requirements Mulled for Next-Generation Airlifter - Airforcemag.com, 2 January 2014
  30. "The Shootdown of Flight 60528." National Vigilance Park- NSA/CSS via nsa.gov, 12 January 2009. Retrieved 11 March 2011.
  31. "Canadian Military Aircraft". Retrieved 6 September 2013.
  32. "C-130 Hercules on Aircraft carrier." Defence Aviation, 2 May 2007. Retrieved 2 October 2010.
  33. "USS Forrestal (CV 59)." navysite.de (Unofficial U.S. Navy site). Retrieved: 2 October 2010.
  34. Odom, Maj. T. "Dragon Operations: Hostage Rescues in the Congo, 1964–1965." Combat Studies Institute, January 2009. Retrieved 2 October 2010.
  35. Thomas Newdick's "The Unusual History of Transport Bomber Planes" War Is Boring, 2 March 2015. Retrieved 2 September 2015.
  36. Group Captain (Retd) SULTAN M HALI's "PAF's Gallant Christian Heroes Carry Quaid's Message" Defence Journal, December 1998. Retrieved 5 September 2015.
  37. Tatheer Islam's "PAF entire C-130 fleet used as bomber aircraft in 1965 war" SAMAA TV, 5 September 2015. Retrieved 5 September 2015.
  38. Pocock, Chris. The Black Bats: CIA Spy Flights over China from Taiwan 1951–1969. Atglen, Ennsylvania: Schiffer Military History, 2010. ISBN 978-0-7643-3513-6.
  39. Leeker, Dr. Joe. "Air America: Lockheed C-130 Hercules." The University of Texas at Dallas. 23 August 2010. Retrieved 29 January 2012.
  40. Baugher, Joe 1964 USAF Serial Numbers Retrieved: 29 January 2012.
  41. Olausson 2010, p. 5.
  42. Olausson, Lars, "Lockheed Hercules Production List 1954-2012", 28th edition, self-published, Såtenäs, Sweden, March 2010, page 43.
  43. Olausson, Lars, "Lockheed Hercules Production List 1954-2012", 28th edition, self-published, Såtenäs, Sweden, March 2010, page 120.
  44. McCullough, Amy. "Abort Launch: Air shows to do without Fat Albert’s famed JATO." Marine Corps Times, 9 November 2009. Retrieved 20 November 2009.
  45. "AFSOC Heritage." US Air Force Special Operations Command. Retrieved: 31 July 2009.
  46. (http://tribune.com.pk/story/291762/paf-conducted-5500-bombing-runs-in-fata-since-2008/
  47. "Modular Airborne FireFighting Systems." U.S. Forest Service, 16 March 2010. Retrieved 2 October 2010.
  48. "specialized aerial service". Retrieved 4 July 2015.
  49. "C-130H/Q Fire Fighting Air Tanker" (PDF).
  50. http://www.7406suppron.com/history/c130aii.asp
  51. King, Capt. Vince, Jr. "Compass Call continues to 'Jam' enemy." Air Force Link, United States Air Force, 1 November 2006.
  52. "Lockheed EC-130V Hercules." Military Analysis Network, Federation of American Scientists, 10 February 1998. Retrieved 2 October 2010.
  53. Housman, Damian. "Highly modified C-130 ready for war on terrorism." Air Force Link, United States Air Force, 29 June 2006.
  54. MC-130 J name change promotes modern missions, preserves heritage. Afsoc.af.mil. Retrieved on 2013-08-16.
  55. "SC-130J Sea Herc". lockheedmartin.com. Lockheed Martin. Retrieved 12 June 2014.
  56. "Lockheed Martin's Sea Hercules unveiled". stratpost.com. StratPost. Retrieved 12 June 2014.
  57. "Aircraft Air Accidents and Damage Rates." Defence Analytical Services Agency. Retrieved: 2 October 2010. Archived 9 July 2009 at the Wayback Machine.
  58. Diehl 2002, p. 45.
  59. "Lockheed C-130 Hercules." Aviation Safety Network, Flight Safety Foundation, 13 November 2004. Retrieved 2 October 2010.
  60. LOCKHEED C-130B Hercules – Mat. TC-60 – Morón
  61. Olausson 2010, p. 62.
  62. Olausson 2010, p. 73.
  63. Olausson 2010, p. 85.
  64. "Hercules makes final flight into Cosford." Royal Air Force Museum. Retrieved: 22 September 2011.
  65. Olausson 2010, p. 7.
  66. Olausson 2010, p. 11.
  67. Olausson 2010, p. 14.
  68. "145th Airlift Wing, North Carolina ANG - Media Gallery". Retrieved 4 July 2015.
  69. Olausson 2010, p. 16.
  70. Olausson 2010, p. 19.
  71. "Factsheet: Lockheed C-130E Hercules." National Museum of the United States Air Force, 29 February 2011.
  72. Olausson 2010, p. 30.
  73. Olausson 2010, p. 43.
  74. Olausson 2010, p. 52.
  75. 1 2 Olausson 2010, p. 74.
  76. "Combat Talon Dedicated." Code One Magazine, 6 May 2011.
  77. Olausson 2010, p. 78.
  78. Olausson 2010, p. 91.
  79. "USAF C-130 Hercules fact sheet." USAF, October 2009.
  80. Frawley 2002, p. 108.
  81. Donald 1997
  82. 1 2 Eden 2004
  83. "Lockheed C-130 Hercules Heavy Transport." aerospaceweb. Retrieved: 11 March 2011.
  84. "C-130 characteristics." uscost.net. Retrieved: 7 July 2009.
  85. "Electronic Mission Aircraft: AN/APN-241 (United States)." Jane's. Retrieved: 2 October 2010.

Bibliography

  • Borman, Martin W. Lockheed C-130 Hercules. Marlborough, UK: Crowood Press, 1999. ISBN 978-1-86126-205-9.
  • Diehl, Alan E., PhD, Former Senior USAF Safety Scientist. Silent Knights: Blowing the Whistle on Military Accidents and Their Cover-ups. Dulles, Virginia: Brassey's Inc., 2002. ISBN 1-57488-544-8.
  • Donald, David, ed. "Lockheed C-130 Hercules". The Complete Encyclopedia of World Aircraft. New York: Barnes & Noble Books, 1997. ISBN 0-7607-0592-5.
  • Eden, Paul. "Lockheed C-130 Hercules". Encyclopedia of Modern Military Aircraft. London: Amber Books, 2004. ISBN 1-904687-84-9.
  • Frawley, Gerard. The International Directory of Military Aircraft, 2002/03. Fyshwick, ACT, Australia: Aerospace Publications Pty Ltd, 2002. ISBN 1-875671-55-2.
  • Olausson, Lars. Lockheed Hercules Production List 1954–2011. Såtenäs, Sweden: Self-published, 27th Edition March 2009. No ISBN.
  • Olausson, Lars. Lockheed Hercules Production List 1954–2012. Såtenäs, Sweden: Self-published, 28th Edition, March 2010. No ISBN.
  • Reed, Chris. Lockheed C-130 Hercules and Its Variants. Atglen, Pennsylvania: Schiffer Publishing, 1999. ISBN 978-0-7643-0722-5.
  •  This article incorporates public domain material from the United States Air Force document "Fact Sheet: Lockheed C-130E Hercules".
Wikimedia Commons has media related to C-130 Hercules.
This article is issued from Wikipedia - version of the 12/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.