Homo erectus

"H. erectus" redirects here. For the seahorse species, see Hippocampus erectus. For the 2007 comedy film, see Homo Erectus (film). For 1997 album, see Homo erectus (album).
"Pithecanthropus erectus" redirects here. For the song and album by that title, see Pithecanthropus Erectus (album). For Pithecanthropus erectus erectus, see Java Man.
Homo erectus
Temporal range: 1.9–0.07 Ma

Early PleistoceneLate Pleistocene

Reconstruction of a specimen from Tautavel, France
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Class: Mammalia
Order: Primates
Suborder: Haplorhini
Family: Hominidae
Tribe: Hominini
Genus: Homo
Species: H. erectus
Binomial name
Homo erectus
(Dubois, 1892)

Homo erectus (meaning "upright man", from the Latin ērigere, "to put up, set upright") is an extinct species of hominid that lived throughout most of the Pleistocene geological epoch. Its earliest fossil evidence dates to 1.9 million years ago and the most recent to 70,000 years ago. It is generally thought that H. erectus originated in Africa and spread from there, migrating throughout Eurasia as far as Georgia, India, Sri Lanka, China and Indonesia.[1][2]

Debate also continues about the classification, ancestry, and progeny of Homo erectus, especially vis-à-vis Homo ergaster, with two major positions: 1) H. erectus is the same species as H. ergaster, and thereby H. erectus is a direct ancestor of the later hominins including Homo heidelbergensis, Homo neanderthalensis, and Homo sapiens; or, 2) it is in fact an Asian species distinct from African H. ergaster.[1][3][4]

There is also another view—an alternative to 1): some paleoanthropologists consider H. ergaster to be a variety, that is, the "African" variety, of H. erectus, and they offer the labels "Homo erectus sensu stricto" (strict sense) for the Asian species and "Homo erectus sensu lato" (broad sense) for the greater species comprising both Asian and African populations.[5][6]

A new debate appeared in 2013, with the documentation of the Dmanisi skulls.[7] Considering the large morphological variation among all Dmanisi skulls, researchers now suggest that several early human ancestors variously classified, for example, as Homo ergaster, or Homo rudolfensis, and perhaps even Homo habilis, should instead be designated as Homo erectus.[8][9]


Homo erectus, University of Michigan Museum of Natural History, Ann Arbor, Michigan

The first hypothesis of origin is that Homo erectus rose from the Australopithecina in East Africa sometime during—or perhaps even before—the Early Pleistocene geological epoch, which itself dates to 2.58 million years ago (see below, at African genesis, re earlier date at Ledi-Geraru Research Area). From there it migrated, in part, by 2.0 mya, probably as a result of broad desertifying conditions developing then in eastern and northern Africa; it joined the migrations through the "Saharan pump" and dispersed around much of the Old World. The fossil record shows that its development from about 1.8 mya to one mya was widely distributed: in Africa (Lake Turkana [10] and Olduvai Gorge), the Transcaucasus (Dmanisi in Georgia), Indonesia (Sangiran, Central Java and Trinil, East Java), and in Vietnam, China (Zhoukoudian and Shaanxi), and India.[11]

The second hypothesis is that H. erectus evolved in Eurasia and then migrated to Africa. They occupied the Dmanisi site from 1.85 million to 1.77 million years ago, which was about the same time or slightly before their earliest evidence in Africa.[12][13] There are several proposed explanations of the dispersal of H. erectus georgicus—including whether or not Africa is the source).[14]

Discovery and representative fossils

The Dutch anatomist Eugène Dubois was fascinated by Darwin's theory of evolution especially as it applied to humankind. In 1886, he set out for Asia—which then was the region accepted as the cradle of human evolution despite Darwin's theory of African origin; see Haeckel § Research—to find a human ancestor. In 1891, his team discovered a human fossil on the island of Java, Dutch East Indies (now Indonesia). Excavated from the bank of the Solo River at Trinil, in East Java, he named the species Pithecanthropus erectus—from the Greek πίθηκος,[15] "ape", and ἄνθρωπος,[16] "man"—based on a skullcap (calotte) and a femur like that of Homo sapiens.

Dubois' 1891 find was the first fossil of a Homo-species (or any hominin species) found as result of a directed expedition and search—and which was inspired by Darwin's radical theory that humans, like all other species, evolved from ancestral species, see human evolution. (The first found and recognized human fossil was the accidental discovery of Homo Neanderthalensis in 1856, see List of human evolution fossils.) The Java fossil from Indonesia aroused much public interest. It was dubbed by the popular press as Java Man; but few scientists accepted Dubois' argument that his fossil was the transitional form—the so-called "missing link"—between apes and humans.[17] Java Man is now classified as Homo erectus.

Most of the spectacular discoveries of H. erectus next took place at the Zhoukoudian Project, now known as the Peking Man Site, in Zhoukoudian, China. This site was first discovered by Johan Gunnar Andersson in 1921[18] and was first excavated in 1921, which produced two human teeth.[19] Canadian anatomist Davidson Black's initial description (1921) of a lower molar as belonging to a previously unknown species (which he named Sinanthropus pekinensis)[20] prompted widely publicized interest. Extensive excavations followed, which altogether uncovered 200 human fossils from more than 40 individuals including five nearly complete skullcaps.[21] German anatomist Franz Weidenreich provided much of the detailed description of this material in several monographs published in the journal Palaeontologica Sinica (Series D).

Nearly all of the original specimens were lost during World War II; however, authentic casts were made by Weidenreich which exist at the American Museum of Natural History in New York City and at the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, and are considered to be reliable evidence.

Throughout much of the 20th century, anthropologists debated the role of H. erectus in human evolution. Early in the century, due in part to the discoveries at Java and Zhoukoudian, it was widely accepted that modern humans first evolved in Asia. A few naturalists—Charles Darwin most prominent among them—theorized that humans' earliest ancestors were African: Darwin pointed out that chimpanzees and gorillas, humans' closest relatives, evolved and exist only in Africa.[22]

African genesis

From the 1950s forward, numerous finds in East Africa confirmed the hypothesis of an African genesis, providing fossil evidence that the earliest hominins originated there. It is now generally accepted that H. erectus descended from either: 1) the earliest hominin genera (such as Australopithecus, and possibly Ardipithecus—of which is still debated whether it is hominin or hominid); or 2) the earliest Homo-species (such as Homo habilis or Homo ergaster). East Africa provided sympatric coexistence for H. erectus and H. habilis for several hundred-thousand years, which tends to confirm the hypothesis that they represent separate lineages from a common ancestor; that is, the ancestral relationship between them was not anagenetic, but was cladogenetic, which here suggests that a subgroup population of habilis—or of a common ancestor of habilis and erectus—became reproductively isolated from the main-group population, eventually evolving into the new species Homo erectus.[23]

Skull of Homo erectus, Indian Museum

In the 1950s, archaeologists John T. Robinson and Robert Broom named Telanthropus capensis;[24] Robinson had discovered a jaw fragment in 1949 in Swartkrans, South Africa. Later, Simonetta proposed to re-designate it to Homo erectus, and Robinson agreed.[25]

In 1961, Yves Coppens discovered a skull of Tchadanthropus uxoris, then the earliest fossil human discovered in north Africa.[26] It was reported that the fossil "had been so eroded by wind-blown sand that it mimicked the appearance of an australopith, a primitive type of hominid".[27] Although at first considered to be a specimen of H. habilis,[28] T. uxoris is no longer considered a valid taxon, and has been subsumed into H. erectus.[26][29]

In 2013, a fragment of fossilized jawbone, dated to around 2.8 million years ago, was discovered in the Ledi-Geraru Research Area in the Afar depression, Ethiopia.[30] The fossil is considered the earliest evidence of the Homo genus known to date, and seems to be intermediate between Australopithecus and H. habilis. The individual lived just after a major climate shift in the region, when forests and waterways were rapidly replaced by arid savannah, which was a domain favored by the early hominins.[31]

Homo erectus georgicus

Dmanisi skull 3, Fossils skull D2700 and D2735 jaw, two of several found in Dmanisi in the Georgian Caucasus.

Homo erectus georgicus is the subspecies name assigned to fossil skulls and jaws found in Dmanisi, Georgia. First proposed as a separate species, it is now classified within H. erectus.[32][33][34] The site was discovered in 1991 by Georgian scientist David Lordkipanidze. Five skulls were excavated from 1991 forward, including a "very complete" skull in 2005. Excavations at Dmanisi have yielded 73 stone tools for cutting and chopping and 34 bone fragments from unidentified fauna.[12] The fossils are about 1.8 million years old.

After their initial assessment, some scientists were persuaded to name the Dmanisi find as a new species, Homo georgicus, which they posited as a descendant of African Homo habilis and an ancestor to Asian Homo erectus. This classification, however, was not supported, and the fossil was instead designated a divergent subgroup of Homo erectus.[35][36][37][38]

The fossil skeletons present a species primitive in its skull and upper body but with relatively advanced spine and lower limbs, inferring greater mobility than the previous morphology.[39] It is now thought not to be a separate species, but to represent a stage soon after the transition between H. habilis to H. erectus; it has been dated at 1.8 mya.[33][40] The assemblage includes one of the largest Pleistocene Homo mandibles (D2600), one of the smallest Lower Pleistocene mandibles (D211), a nearly complete sub-adult (D2735), and a toothless specimen D3444/D3900.[41]

Two of the skulls—D2700, with a brain volume of 600 cubic centimetres (37 cu in), and D4500 or Dmanisi Skull 5, with a brain volume of about 546 centimetres—present the two smallest and most primitive Hominina skulls from the Pleistocene period.[8] The variation in these skulls were compared to variations in modern humans and within a sample group of chimpanzees. The researchers found that, despite appearances, the variations in the Dmanisi skulls were no greater than those seen among modern people and among chimpanzees. These findings suggest that previous fossil finds that were classified as different species on the basis of the large morphological variation among them—including Homo rudolfensis, Homo gautengensis, H. ergaster, and potentially even H. habilis—should perhaps be re-classified to the same lineage as Homo erectus.[42]

Classification and distinctions

Location of Dmanisi discovery, Georgia

Paleoanthropologists continue to debate the classification of Homo erectus and Homo ergaster as separate species. One school of thought suggests dropping the taxon Homo erectus and equating H. erectus with the archaic H. sapiens.[43][44][45][46] Another calls H. ergaster the direct African ancestor of H. erectus, proposing that erectus emigrated out of Africa to Asia while branching into a distinct species.[47] Some scholars dispense with the species name ergaster, making no distinction between such fossils as the Turkana Boy and Peking Man. Still, "Homo ergaster" has gained some acceptance as a valid taxon, and the two species are still usually defined as distinct African and Asian populations of the greater species H. erectus, that is, "Homo erectus sensu lato".

Some have insisted that Ernst Mayr's biological species definition cannot be used to test the above hypotheses—that is, that the two species might be considered the same. Alternatively, the amount of variation of cranial morphology between known specimens of H. erectus and H. ergaster can be compared to the same variation within an appropriate population of living primates (that is, one of similar geographical distribution or close evolutionary relationship), such that: if the amount of variation between H. erectus and H. ergaster is greater than that within an appropriately selected population, for example, say, macaques, then H. erectus and H. ergaster may be considered as two different species.

Finding an extant (i.e., living) model suitable for field study, analysis, and comparison is very important; and selecting a living sample population of an appropriate species can be difficult. (For example, the morphological variation among the global population of H. sapiens is small,[48] so our own species diversity may not be a trustworthy comparison. Fossils found in Dmanisi, Georgia were originally designated as a separate (but closely related) species; but subsequent specimens showed their variation to be within the range of Homo erectus. and they are now classified as Homo erectus georgicus.)

H. erectus fossils show a cranial capacity greater than that of Homo habilis (although the Dmanisi specimens have distinctively small crania): the earliest fossils show a cranial capacity of 850 cm³, while later Javan specimens measure up to 1100 cm³,[48] overlapping that of H. sapiens.; the frontal bone is less sloped and the dental arcade smaller than that of the australopithecines; the face is more orthognatic (less protrusive) than either the australopithecines or H. habilis, with large brow-ridges and less prominent zygomata (cheekbones). The early hominins stood about 1.79 m (5 ft 10 in)[49]—only 17 percent of modern male humans are taller[50]—and were extraordinarily slender, with long arms and legs.[51]

Sexual dimorphism in H. erectus—males are about 25% larger than females—is slightly greater than seen in the later H. sapiens, but less than that of the earlier genus Australopithecus. Regarding evolution of human physiology, the discovery of the skeleton of "Turkana boy" (Homo ergaster) near Lake Turkana, Kenya, by Richard Leakey and Kamoya Kimeu in 1984—one of the most complete hominin skeletons ever discovered—has contributed greatly to the interpretation.

Interpreting evolution: H. erectus / H. ergaster / H. sapiens

Stringer graph-model of the evolution of several species of genus Homo over the last 2 million years (vertical axis). The rapid "Out of Africa" expansion of H. sapiens is indicated at the top of the diagram.[52]

Stringer (2003, 2012) and Reed, et al. (2004) and others have produced schematic graph-models for interpreting the evolution of Homo sapiens from earlier species of Homo, including Homo erectus and/or Homo ergaster, see graphs at right. Blue areas denote the existence of one or more hominin species at a given time and place (that is, region). These and other interpretations differ mainly in the taxonomy and geographical distribution of species.[52][53]

Stringer (see upper graph-model) depicts the presence of H. erectus as dominating the temporal and geographic development of human evolution; and as persisting broadly throughout Africa and Eurasia for nearly 2 million years, eventually evolving into H. heidelbergensis / H. rhodesiensis, which in turn evolved into H. sapiens. Reed, et al. shows Homo ergaster as the ancestor of Homo erectus; then it is ergaster, or a variety of ergaster, or perhaps a hybrid of ergaster and erectus, which develops into species that evolve into archaic and then modern humans and then out of Africa.

Both models show the Asian variety of Homo erectus going extinct recently. And both models indicate species admixture: early modern humans spread from Africa across different regions of the globe and interbred with earlier descendants of H. heidelbergensis / H. rhodesiensis, namely the Neanderthals, Denisovans, as well as unknown archaic African hominins. See admixture; and see Neanderthal admixture theory.[54]

Use of tools and fire

An alternate graph-model of the temporal and geographical distribution of several Homo species, evolving over the last two million years ; proposed by Reed, et al., redrawn from Stringer.[53] Note the depiction of Homo ergaster as an ancestor of Homo erectus.

The Paleolithic Age (Old Stone Age) of prehistoric human history and industry is dated from 2.6 million years ago to about 10,000 years ago;[55] thus it closely coincides with the Pleistocene epoch of geologic time, which is 2.58 million to 11,700 years ago.[56] The beginning of early human evolution reaches back to the earliest innovations of primitive technology and tool culture. H. erectus were the first to use fire to cook and made hand axes out of stone.

Homo ergaster used more diverse and sophisticated stone tools than its predecessors, where early Homo erectus used comparatively primitive tools. This is probably because H. ergaster inherited, used, and created tools first of Oldowan technology and later advanced the technology to the Acheulean.[57] Because the use of Acheulean tools began ca. 1.8 million years ago,[58] and the line of H. erectus diverged some 200,000 years before the general innovation of Acheulean industry in Africa, then it is plausible that the Asian migratory descendants of H. erectus made no use of Acheulean technology. It has been suggested that the Asian H. erectus may have been the first humans to use rafts to travel over bodies of water, including oceans.[59] And the oldest stone tool found in Turkey reveals that hominins passed through the Anatolian gateway from western Asia to Europe approximately 1.2 million years ago—much earlier than previously thought.[60]

Use of fire

East African sites, such as Chesowanja near Lake Baringo, Koobi Fora, and Olorgesailie in Kenya, show potential evidence that fire was utilized by early humans. At Chesowanja, archaeologists found fire-hardened clay fragments, dated to 1.42 mya.[61] Analysis showed that, in order to harden it, the clay must have been heated to about 400 °C (752 °F). At Koobi Fora, two sites show evidence of control of fire by Homo erectus at about 1.5 mya, with reddening of sediment associated with heating the material to 200–400 °C (392–752 °F).[61] At a "hearth-like depression" at a site in Olorgesailie, Kenya, some microscopic charcoal was found—but that could have resulted from natural brush fires.[61]

In Gadeb, Ethiopia, fragments of welded tuff that appeared to have been burned, or scorched, were found alongside H. erectus–created Acheulean artifacts; but such re-firing of the rocks may have been caused by local volcanic activity.[61] In the Middle Awash River Valley, cone-shaped depressions of reddish clay were found that could have been created only by temperatures of 200 °C (392 °F) or greater. These features are thought to be burnt tree stumps such that the fire was likely away from a habitation site.[61] Burnt stones are found in the Awash Valley, but naturally burnt (volcanic) welded tuff is also found in the area.

A site at Bnot Ya'akov Bridge, Israel is reported to evidence that H. erectus or H. ergaster controlled fire there between 790,000 and 690,000 BP;[62] to date this claim has been widely accepted. Some evidence is found that H. erectus was controlling fire less than 250,000 years ago. Evidence also exists that H. erectus were cooking their food as early as 500,000 years ago.[63] Re-analysis of burnt bone fragments and plant ashes from the Wonderwerk Cave, South Africa, has been dubbed evidence supporting human control of fire there by 1 mya.[64]


Main article: Cooking § History

There is archaeological evidence that Homo erectus cooked their food.[63]


Homo erectus was probably the first hominin to live in a hunter-gatherer society, and anthropologists such as Richard Leakey believe that erectus was socially more like modern humans than the more Australopithecus-like species before it. Likewise, increased cranial capacity generally coincides with the more sophisticated tools occasionally found with fossils.

The discovery of Turkana boy (H. ergaster) in 1984 evidenced that, despite its Homo sapiens-like anatomy, ergaster may not have been capable of producing sounds comparable to modern human speech. It likely communicated in a proto-language lacking the fully developed structure of modern human language but more developed than the non-verbal communication used by chimpanzees.[65] This inference is challenged by the find in Dmanisi, Georgia, of an H. ergaster / erectus vertebrae (at least 150,000 years earlier than the Turkana Boy) that reflects vocal capabilities within the range of H. sapiens.[39] Both brain size and the presence of the Broca's area also support the use of articulate language.[66]

H. erectus was probably the first hominin to live in small, familiar band-societies similar to modern hunter-gatherer band-societies;[67] and is thought to be the first hominin species to hunt in coordinated groups, to use complex tools, and to care for infirm or weak companions.

There has been debate as to whether H. erectus,[54] and possibly the later Neanderthals,[68] may have interbred with anatomically modern humans in Europe and Asia. See Neanderthal admixture theory.

Descendants and subspecies

Homo erectus is the most, or one of the most, long-lived species of Homo, having existed well over one million years and perhaps over two million years; Homo sapiens has existed for about 200,000 years. If considering Homo erectus in its strict sense (that is, as referring to only the Asian variety) no consensus has been reached as to whether it is ancestral to H. sapiens or any later hominins (see above, "Interpreting evolution: ...").

A model of the face of an adult female Homo erectus. Reconstruction by John Gurche, Smithsonian Museum of Natural History, based on KNM ER 3733 and 992.

Homo erectus

Previously referred taxa

The discovery of Homo floresiensis in 2003 and of the recentness of its extinction has raised the possibility that numerous descendant species of Homo erectus may have existed in the islands of Southeast Asia and await fossil discovery (see Orang Pendek). Homo erectus soloensis, who was long assumed to have lived on Java at least as late as about 50,000 years ago but was re-dated in 2011 to a much older age,[69] would be one of them. Some scientists are skeptical of the claim that Homo floresiensis is a descendant of Homo erectus. One explanation holds that the fossils are of a modern human with microcephaly, while another one holds that they are from a group of pygmies.

Individual fossils

Some of the major Homo erectus fossils:

See also



  1. 1 2 Hazarika, Manji (16–30 June 2007). "Homo erectus/ergaster and Out of Africa: Recent Developments in Paleoanthropology and Prehistoric Archaeology" (PDF).
  2. Chauhan, Parth R. (2003) "Distribution of Acheulian sites in the Siwalik region" in An Overview of the Siwalik Acheulian & Reconsidering Its Chronological Relationship with the Soanian – A Theoretical Perspective. assemblage.group.shef.ac.uk
  3. See overview of theories on human evolution.
  4. Klein, R. (1999). The Human Career: Human Biological and Cultural Origins. Chicago: University of Chicago Press, ISBN 0226439631.
  5. Antón, S. C. (2003). "Natural history of Homo erectus". Am. J. Phys. Anthropol. 122: 126–170. doi:10.1002/ajpa.10399. By the 1980s, the growing numbers of H. erectus specimens, particularly in Africa, led to the realization that Asian H. erectus (H. erectus sensu stricto), once thought so primitive, was in fact more derived than its African counterparts. These morphological differences were interpreted by some as evidence that more than one species might be included in H. erectus sensu lato (e.g., Stringer, 1984; Andrews, 1984; Tattersall, 1986; Wood, 1984, 1991a, b; Schwartz and Tattersall, 2000) ... Unlike the European lineage, in my opinion, the taxonomic issues surrounding Asian vs. African H. erectus are more intractable. The issue was most pointedly addressed with the naming of H. ergaster on the basis of the type mandible KNM-ER 992, but also including the partial skeleton and isolated teeth of KNM-ER 803 among other Koobi Fora remains (Groves and Mazak, 1975). Recently, this specific name was applied to most early African and Georgian H. erectus in recognition of the less-derived nature of these remains vis à vis conditions in Asian H. erectus (see Wood, 1991a, p. 268; Gabunia et al., 2000a). It should be noted, however, that at least portions of the paratype of H. ergaster (e.g., KNM-ER 1805) are not included in most current conceptions of that taxon. The H. ergaster question remains famously unresolved (e.g., Stringer, 1984; Tattersall, 1986; Wood, 1991a, 1994; Rightmire, 1998b; Gabunia et al., 2000a; Schwartz and Tattersall, 2000), in no small part because the original diagnosis provided no comparison with the Asian fossil record
  6. Suwa G, Asfaw B, Haile-Selassie Y, White T, Katoh S, WoldeGabriel G, Hart W, Nakaya H, Beyene Y (2007). "Early Pleistocene Homo erectus fossils from Konso, southern Ethiopia". Anthropological Science. 115 (2): 133–151. doi:10.1537/ase.061203.
  7. Skull suggests three early human species were one : Nature News & Comment
  8. 1 2 David Lordkipanidze, Marcia S. Ponce de Leòn, Ann Margvelashvili, Yoel Rak, G. Philip Rightmire, Abesalom Vekua, Christoph P. E. Zollikofer (18 October 2013). "A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early Homo". Science. 342 (6156): 326–331. doi:10.1126/science.1238484.
  9. Switek, Brian (17 October 2013). "Beautiful Skull Spurs Debate on Human History". National Geographic. Retrieved 22 September 2014.
  10. Frazier, Kendrick (Nov–Dec 2006). "Leakey Fights Church Campaign to Downgrade Kenya Museum's Human Fossils". Skeptical Inquirer magazine. 30 (6). Archived from the original on 2009-01-10.
  11. Prins, Harald E. L.; Walrath, Dana; McBride, Bunny (2007). Evolution and prehistory: the human challenge. Wadsworth Publishing. p. 162. ISBN 978-0-495-38190-7.
  12. 1 2 Ferring, R.; Oms, O.; Agusti, J.; Berna, F.; Nioradze, M.; Shelia, T.; Tappen, M.; Vekua, A.; Zhvania, D.; Lordkipanidze, D. (2011). "Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85-1.78 Ma". Proceedings of the National Academy of Sciences. 108 (26): 10432–10436. doi:10.1073/pnas.1106638108.
  13. New discovery suggests Homo erectus originated from Asia. Dnaindia.com. 8 June 2011.
  14. Augusti, Jordi; Lordkipanidze, David (June 2011). "How "African" was the early human dispersal out of Africa?". Quaternary Science Reviews. 30 (11–12): 1338–1342. doi:10.1016/j.quascirev.2010.04.012.
  15. pithecos
  16. anthropos
  17. Swisher, Curtis & Lewin 2000, p. 70.
  18. "The First Knock at the Door". Peking Man Site Museum. In the summer of 1921, Dr. J.G. Andersson and his companions discovered this richly fossiliferous deposit through the local quarry men's guide. During examination he was surprised to notice some fragments of white quartz in tabus, a mineral normally foreign in that locality. The significance of this occurrence immediately suggested itself to him and turning to his companions, he exclaimed dramatically "Here is primitive man, now all we have to do is find him!"
  19. "The First Knock at the Door". Peking Man Site Museum. For some weeks in this summer and a longer period in 1923 Dr. Otto Zdansky carried on excavations of this cave site. He accumulated an extensive collection of fossil material, including two Homo erectus teeth that were recognized in 1926. So, the cave home of Peking Man was opened to the world.
  20. from sino-, a combining form of the Greek Σίνα, "China", and the Latinate pekinensis, "of Peking"
  21. "Review of the History". Peking Man Site Museum. During 1927-1937, abundant human and animal fossils as well as artefact were found at Peking Man Site, it made the site to be the most productive one of the Homo erectus sites of the same age all over the world. Other localities in the vicinity were also excavated almost at the same time.
  22. Darwin, Charles R. (1871). The Descent of Man and Selection in Relation to Sex. John Murray. ISBN 0-8014-2085-7.
  23. F. Spoor; M. G. Leakey; P. N. Gathogo; F. H. Brown; S. C. Antón; I. McDougall; C. Kiarie; F. K. Manthi; L. N. Leakey (2007-08-09). "Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya". Nature. 448 (7154): 688–691. doi:10.1038/nature05986. PMID 17687323. "A partial maxilla assigned to H. habilis reliably demonstrates that this species survived until later than previously recognized, making an anagenetic relationship with H. erectus unlikely" (Emphasis added).
  24. ROBINSON JT (January 1953). "The nature of Telanthropus capensis". Nature. 171 (4340): 33. doi:10.1038/171033a0. PMID 13025468.
  25. Frederick E. Grine; John G. Fleagle; Richard E. Leakey (1 Jun 2009). "Chapter 2: Homo habilis—A Premature Discovery: Remember by One of Its Founding Fathers, 42 Years Later". The First Humans: Origin and Early Evolution of the Genus Homo. Springer. p. 7.
  26. 1 2 Kalb, Jon E (2001). Adventures in the Bone Trade: The Race to Discover Human Ancestors in Ethiopia's Afar Depression. Springer. p. 76. ISBN 0-387-98742-8. Retrieved 2010-12-02.
  27. Wood, Bernard (11 July 2002). "Palaeoanthropology: Hominid revelations from Chad" (PDF). Nature. 418 (6894): 133–135. doi:10.1038/418133a. Retrieved 2 December 2010.
  28. Cornevin, Robert (1967). Histoire de l'Afrique. Payotte. p. 440. ISBN 2-228-11470-7.
  29. "Mikko's Phylogeny Archive". Finnish Museum of Natural History, University of Helsinki. Archived from the original on 2007-01-06.
  30. "Oldest known member of human family found in Ethiopia". New Scientist. 4 March 2015. Retrieved 2015-03-07. Ghosh, Pallab (4 March 2015). "'First human' discovered in Ethiopia". bbc.co.uk. Retrieved 7 March 2015.
  31. "Vertebrate fossils record a faunal turnover indicative of more open and probable arid habitats than those reconstructed earlier in this region, in broad agreement with hypotheses addressing the role of environmental forcing in hominin evolution at this time." Erin N. DiMaggio EN; Campisano CJ; Rowan J; Dupont-Nivet G; Deino AL; et al. (2015). "Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia". Science. 347: 1355–9. doi:10.1126/science.aaa1415. PMID 25739409.
  32. Vekua A, Lordkipanidze D, Rightmire GP, Agusti J, Ferring R, Maisuradze G, Mouskhelishvili A, Nioradze M, De Leon MP, Tappen M, Tvalchrelidze M, Zollikofer C (2002). "A new skull of early Homo from Dmanisi, Georgia". Science. 297 (5578): 85–9. doi:10.1126/science.1072953. PMID 12098694.
  33. 1 2 Lordkipanidze D, Jashashvili T, Vekua A, Ponce de León MS, Zollikofer CP, Rightmire GP, Pontzer H, Ferring R, Oms O, Tappen M, Bukhsianidze M, Agusti J, Kahlke R, Kiladze G, Martinez-Navarro B, Mouskhelishvili A, Nioradze M, Rook L (2007). "Postcranial evidence from early Homo from Dmanisi, Georgia" (PDF). Nature. 449 (7160): 305–310. doi:10.1038/nature06134. PMID 17882214.
  34. Lordkipanidze, D.; Vekua, A.; Ferring, R.; Rightmire, G. P.; Agusti, J.; Kiladze, G.; Mouskhelishvili, A.; Nioradze, M.; Ponce De León, M. S. P.; Tappen, M.; Zollikofer, C. P. E. (2005). "Anthropology: The earliest toothless hominin skull". Nature. 434 (7034): 717–718. doi:10.1038/434717b. PMID 15815618.
  35. Gibbons, A. (2003). "A Shrunken Head for African Homo erectus" (PDF). Science. 300 (5621): 893a. doi:10.1126/science.300.5621.893a.
  36. Tattersall, I.; Schwartz, J. H. (2009). "Evolution of the GenusHomo". Annual Review of Earth and Planetary Sciences. 37: 67–92. doi:10.1146/annurev.earth.031208.100202.
  37. Rightmire, G. P.; Lordkipanidze, D.; Vekua, A. (2006). "Anatomical descriptions, comparative studies and evolutionary significance of the hominin skulls from Dmanisi, Republic of Georgia". Journal of Human Evolution. 50 (2): 115–141. doi:10.1016/j.jhevol.2005.07.009. PMID 16271745.
  38. Gabunia, L.; Vekua, A.; Lordkipanidze, D.; Swisher Cc, 3.; Ferring, R.; Justus, A.; Nioradze, M.; Tvalchrelidze, M.; Antón, S. C.; Bosinski, G.; Jöris, O.; Lumley, M. A.; Majsuradze, G.; Mouskhelishvili, A. (2000). "Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age". Science. 288 (5468): 1019–1025. doi:10.1126/science.288.5468.1019. PMID 10807567.
  39. 1 2 Bower, Bruce (3 May 2006). "Evolutionary back story: Thoroughly modern spine supported human ancestor". Science News. 169 (18): 275–276. doi:10.2307/4019325.
  40. Wilford, John Noble (19 September 2007). "New Fossils Offer Glimpse of Human Ancestors". The New York Times. Retrieved 9 September 2009.
  41. Rightmire, G. Philip; Van Arsdale, Adam P.; Lordkipanidze, David (2008). "Variation in the mandibles from Dmanisi, Georgia". Journal of Human Evolution. 54 (6): 904–8. doi:10.1016/j.jhevol.2008.02.003. PMID 18394678.
  42. Ian Sample (17 October 2013). "Skull of Homo erectus throws story of human evolution into disarray". The Guardian.
  43. Weidenreich, F. (1943). "The "Neanderthal Man" and the ancestors of "Homo Sapiens"". American Anthropologist. 45: 39–48. doi:10.1525/aa.1943.45.1.02a00040. JSTOR 662864.
  44. Jelinek, J. (1978). "Homo erectus or Homo sapiens?". Rec. Adv. Primatol. 3: 419–429.
  45. Wolpoff, M.H. (1984). "Evolution of Homo erectus: The question of stasis". Palaeobiology. 10 (4): 389–406. JSTOR 2400612.
  46. Frayer, D.W., Wolpoff, M.H.; Thorne, A.G.; Smith, F.H.; Pope, G.G. (1993). "Theories of modern human origins: The paleontological test". American Anthropologist. 95: 14–50. doi:10.1525/aa.1993.95.1.02a00020. JSTOR 681178.
  47. Tattersall, Ian and Jeffrey Schwartz (2001). Extinct Humans. Boulder, Colorado: Westview/Perseus. ISBN 0-8133-3482-9.
  48. 1 2 Swisher, Carl Celso III; Curtis, Garniss H. and Lewin, Roger (2002) Java Man, Abacus, ISBN 0-349-11473-0.
  49. Bryson, Bill (2005). A Short History of Nearly Everything: Special Illustrated Edition. Toronto: Doubleday Canada. ISBN 0-385-66198-3.
  50. Khanna, Dev Raj (2004). Human Evolution. Discovery Publishing House. p. 195. ISBN 978-8171417759. Retrieved 30 March 2013. African H. erectus, with a mean stature of 170 cm, would be in the tallest 17 percent of modern populations, even if we make comparisons only with males
  51. Roylance, Frank D. Roylance (6 February 1994). "A Kid Tall For His Age". Baltimore Sun. Retrieved 30 March 2013. Clearly this population of early people were tall, and fit. Their long bones were very strong. We believe their activity level was much higher than we can imagine today. We can hardly find Olympic athletes with the stature of these people
  52. 1 2 Stringer, C. (2012). "What makes a modern human". Nature. 485 (7396): 33–35. doi:10.1038/485033a. PMID 22552077.
  53. 1 2 "Figure 5. Temporal and Geographical Distribution of Hominid Populations Redrawn from Stringer (2003)" (edited from source), in Reed, David L.; Smith, Vincent S.; Hammond, Shaless L.; et al. (November 2004). "Genetic Analysis of Lice Supports Direct Contact between Modern and Archaic Humans". PLOS Biology. San Francisco, CA: PLOS. 2 (11): e340. doi:10.1371/journal.pbio.0020340. ISSN 1545-7885. PMC 521174Freely accessible. PMID 15502871.
  54. 1 2 Whitfield, John (18 February 2008). "Lovers not fighters". Scientific American.
  55. Toth, Nicholas; Schick, Kathy (2007). "Handbook of Paleoanthropology". In Henke, H.C. Winfried; Hardt, Thorolf; Tatersall, Ian. Handbook of Paleoanthropology. Volume 3. Berlin; Heidelberg; New York: Springer-Verlag. p. 1944. (PRINT: ISBN 978-3-540-32474-4 ONLINE: ISBN 978-3-540-33761-4)
  56. "The Pleistocene Epoch". University of California Museum of Paleontology. Retrieved 22 August 2014.
  57. Beck, Roger B.; Black, Linda; Krieger, Larry S.; Naylor, Phillip C.; Shabaka, Dahia Ibo (1999). World History: Patterns of Interaction. Evanston, IL: McDougal Littell. ISBN 0-395-87274-X.
  58. The Earth Institute. (2011-09-01). Humans Shaped Stone Axes 1.8 Million Years Ago, Study Says. Columbia University. Accessed 5 January 2012.
  59. Gibbons, Ann (13 March 1998). "Paleoanthropology: Ancient Island Tools Suggest Homo erectus Was a Seafarer". Science. 279 (5357): 1635–1637. doi:10.1126/science.279.5357.1635.
  60. Oldest stone tool ever found in Turkey discovered by the University of Royal Holloway London and published in ScienceDaily on December 23, 2014
  61. 1 2 3 4 5 James, Steven R. (February 1989). "Hominid Use of Fire in the Lower and Middle Pleistocene: A Review of the Evidence" (PDF). Current Anthropology. University of Chicago Press. 30 (1): 1–26. doi:10.1086/203705. Retrieved 2012-04-04.
  62. Rincon, Paul (29 April 2004). "Early human fire skills revealed". BBC News. Retrieved 2007-11-12.
  63. 1 2 Pollard, Elizabeth (2015). Worlds Together, Worlds Apart. New York: Norton. p. 13. ISBN 978-0-393-92207-3.
  64. Pringle, Heather (2 April 2012), "Quest for Fire Began Earlier Than Thought", ScienceNOW, American Association for the Advancement of Science, retrieved 2012-04-04
  65. Ruhlen, Merritt (1994). The origin of language: tracing the evolution of the mother tongue. New York: Wiley. ISBN 0-471-58426-6.
  66. Leakey, Richard (1992). Origins Reconsidered. Anchor. pp. 257–58. ISBN 0-385-41264-9.
  67. Boehm, Christopher (1999). Hierarchy in the forest: the evolution of egalitarian behavior. Cambridge: Harvard University Press. p. 198. ISBN 0-674-39031-8.
  68. Owen, James (30 October 2006). "Neanderthals, Modern Humans Interbred, Bone Study Suggests". National Geographic News. Retrieved 2008-01-14.
  69. Finding showing human ancestor older than previously thought offers new insights into evolution, 5 July 2011.
  70. Delson E, Harvati K, Reddy D, et al. (April 2001). "The Sambungmacan 3 Homo erectus calvaria: a comparative morphometric and morphological analysis". The Anatomical Record. 262 (4): 380–97. doi:10.1002/ar.1048. PMID 11275970.
  71. Ciochon R, Long VT, Larick R, et al. (April 1996). "Dated co-occurrence of Homo erectus and Gigantopithecus from Tham Khuyen Cave, Vietnam". Proceedings of the National Academy of Sciences of the United States of America. 93 (7): 3016–20. doi:10.1073/pnas.93.7.3016. PMC 39753Freely accessible. PMID 8610161.
  72. Schuster, Angela M. H. (September–October 1998). "New Skull from Eritrea". Archaeology. Archaeological Institute of America; republished online at archive.org. Retrieved 3 October 2015.
  73. Kappelman J, Alçiçek MC, Kazanci N, Schultz M, Ozkul M, Sen S (January 2008). "First Homo erectus from Turkey and implications for migrations into temperate Eurasia". American Journal of Physical Anthropology. 135 (1): 110–16. doi:10.1002/ajpa.20739. PMID 18067194.

Further reading

Wikimedia Commons has media related to Homo erectus.
This article is issued from Wikipedia - version of the 11/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.