Part of a series on
Genetic genealogy
Related topics

A haplotype is a group of genes in an organism that are inherited together from a single parent,[1][2] and a haplogroup (haploid from the Greek: ἁπλούς, haploûs, "onefold, single, simple" and English: group) is a group of similar haplotypes that share a common ancestor with a single-nucleotide polymorphism mutation.[3][4] More specifically, a haplogroup is a combination of alleles at different chromosomes regions that are closely linked and that tend to be inherited together. As a haplogroup consists of similar haplotypes, it is usually possible to predict a haplogroup from haplotypes. Haplogroups pertain to a single line of descent, usually dating back thousands of years.[5] As such, membership of a haplogroup, by any individual, relies on a relatively small proportion of the genetic material possessed by that individual.

Each haplogroup originates from, and remains part of, a preceding single haplogroup (or paragroup). As such, any related group of haplogroups may be precisely modelled as a nested hierarchy, in which each set (haplogroup) is also a subset of a single broader set (as opposed, that is, to biparental models, such as human family trees).

Haplogroups are normally identified by an initial letter of the alphabet, and refinements consist of additional number and letter combinations, such as (for example) A → A1 → A1a.

In human genetics, the haplogroups most commonly studied are Y-chromosome (Y-DNA) haplogroups and mitochondrial DNA (mtDNA) haplogroups, both of which can be used to define genetic populations. Y-DNA is passed solely along the patrilineal line, from father to son, while mtDNA is passed down the matrilineal line, from mother to offspring of both sexes. Neither recombines, and thus Y-DNA and mtDNA change only by chance mutation at each generation with no intermixture between parents' genetic material.

Haplogroup formation

  Ancestral Haplogroup
  Haplogroup A (Hg A)
  Haplogroup B (Hg B)
All of these molecules are part of the ancestral haplogroup, but at some point in the past a mutation occurred in the ancestral molecule, mutation A, which produced a new lineage; this is haplogroup A and is defined by mutation A. At some more recent point in the past, a new mutation, mutation B, occurred in a person carrying haplogroup A; mutation B defined haplogroup B. Haplogroup B is a subgroup, or subclade of haplogroup A; both haplogroups A and B are subclades of the ancestral haplogroup.

Mitochondria are small organelles that lie in the cytoplasm of eukaryotic cells, such as those of humans. Their primary purpose is to provide energy to the cell. Mitochondria are thought to be reduced descendants of symbiotic bacteria that were once free living. One indication that mitochondria were once free living is that each contains a circular DNA, called mitochondrial DNA (mtDNA), whose structure is more similar to bacteria than eukaryotic organisms (see endosymbiotic theory). The overwhelming majority of a human's DNA is contained in the chromosomes in the nucleus of the cell, but mtDNA is an exception.

An individual inherits his or her cytoplasm and the organelles contained by that cytoplasm exclusively from the maternal ovum (egg cell); sperm only pass on the chromosomal DNA, all mitochondria are digested in the oocyte. When a mutation arises in a mtDNA molecule, the mutation is therefore passed in a direct female line of descent. Mutations are copying mistakes in the DNA sequence. Single mistakes are called single nucleotide polymorphisms (SNPs).

Human Y chromosomes are male-specific sex chromosomes; nearly all humans that possess a Y chromosome will be morphologically male. Although Y chromosomes are situated in the cell nucleus and paired with X chromosomes, they only recombine with the X chromosome at the ends of the Y chromosome; the remaining 95% of the Y chromosome does not recombine. Therefore, the Y chromosome and any mutations that arise in it are passed on from father to son in a direct male line of descent. This means the Y chromosome and mtDNA share specific properties.

Other chromosomes, autosomes and X chromosomes in women, share their genetic material (called crossing over leading to recombination) during meiosis (a special type of cell division that occurs for the purposes of sexual reproduction). Effectively this means that the genetic material from these chromosomes gets mixed up in every generation, and so any new mutations are passed down randomly from parents to offspring.

The special feature that both Y chromosomes and mtDNA display is that mutations can accrue along a certain segment of both molecules and these mutations remain fixed in place on the DNA. Furthermore, the historical sequence of these mutations can also be inferred. For example, if a set of ten Y chromosomes (derived from ten different men) contains a mutation, A, but only five of these chromosomes contain a second mutation, B, then it must be the case that mutation B occurred after mutation A.

Furthermore, all ten men who carry the chromosome with mutation A are the direct male line descendants of the same man who was the first person to carry this mutation. The first man to carry mutation B was also a direct male line descendant of this man, but is also the direct male line ancestor of all men carrying mutation B. Series of mutations such as this form molecular lineages. Furthermore, each mutation defines a set of specific Y chromosomes called a haplogroup.

All men carrying mutation A form a single haplogroup, and all men carrying mutation B are part of this haplogroup, but mutation B also defines a more recent haplogroup (which is a subgroup or subclade) of its own to which men carrying only mutation A do not belong. Both mtDNA and Y chromosomes are grouped into lineages and haplogroups; these are often presented as tree like diagrams.

Haplogroup population genetics

It is usually assumed that there is little natural selection for or against a particular haplotype mutation which has survived to the present day, so apart from mutation rates (which may vary from one marker to another) the main driver of population genetics affecting the proportions of haplotypes in a population is genetic drift — random fluctuation caused by the sampling randomness of which members of the population happen to pass their DNA on to members of the next generation of the appropriate sex.

This causes the prevalence of a particular marker in a population to continue to fluctuate, until it either hits 100%, or falls out of the population entirely. In a large population with efficient mixing the rate of genetic drift for common alleles is very low; however, in a very small interbreeding population the proportions can change much more quickly. The marked geographical variations and concentrations of particular haplotypes and groups of haplotypes therefore witness the distinctive effects of repeated population bottlenecks or founder events followed by population separations and increases.

The lineages which can be traced back from the present will not reflect the full genetic variation of the older population: genetic drift means that some of the variants will have died out. The cost of full Y-DNA and mtDNA sequence tests has limited the availability of data; however, their cost has dropped dramatically in the last decade. Haplotype coalescence times and current geographical prevalences both carry considerable error uncertainties. This is especially troublesome for coalescence times, because most population geneticists still continue (albeit decreasing a little bit) to use the "Zhivotovski method", which is heavily criticised by DNA-genealogists for its falsehood. The eusocial wasp Angiopolybia pallens presents with 8 haplogroups depending on its location. This displays the idea of genetic drift.

Human Y-chromosome DNA haplogroups

Human Y chromosome DNA (Y-DNA) haplogroups are named from A to T, and are further subdivided using numbers and lower case letters. Y chromosome haplogroup designations are established by the Y Chromosome Consortium.[6]

Phylogenetic tree of human Y-chromosome DNA haplogroups [χ 1][χ 2]
"Y-chromosomal Adam"
A00 A0-T [χ 3]
A0 A1 [χ 4]
A1a A1b
A1b1 BT
F1  F2  F3  GHIJK
IJ   K
I J    LT [χ 5]  K2
L T [χ 6] NO [χ 7] K2b [χ 8]     K2c  K2d  K2e [χ 9]
N   O   K2b1 [χ 10]     P
K2b1a[χ 11]     K2b1b K2b1c      M     P1 P2
K2b1a1   K2b1a2   K2b1a3 S [χ 12] Q   R
  1. Van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau HD (2014). "Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome". Human Mutation. 35 (2): 187–91. doi:10.1002/humu.22468. PMID 24166809.
  2. International Society of Genetic Genealogy (ISOGG; 2015), Y-DNA Haplogroup Tree 2015. (Access date: 1 February 2015.)
  3. Haplogroup A0-T is also known as A0'1'2'3'4.
  4. Haplogroup A1 is also known as A1'2'3'4.
  5. Haplogroup LT (L298/P326) is also known as Haplogroup K1.
  6. Between 2002 and 2008, Haplogroup T (M184) was known as "Haplogroup K2" – that name has since been re-assigned to K-M526, the sibling of Haplogroup LT.
  7. Haplogroup NO (M214) is also known as Haplogroup K2a (although the present Haplogroup K2e was also previously known as "K2a").
  8. Haplogroup K2b (M1221/P331/PF5911) is also known as Haplogroup MPS.
  9. Haplogroup K2e (K-M147) was previously known as "Haplogroup X" and "K2a" (but is a sibling subclade of the present K2a, also known as Haplogroup NO).
  10. Haplogroup K2b1 (P397/P399) is similar to the former Haplogroup MS, but has a broader and more complex internal structure.
  11. Haplogroup K2b1a has also been known as Haplogroup S-P405.
  12. Haplogroup S (S-M230), also known as K2b1a4, was previously known as Haplogroup K5.

Y-chromosomal Adam is the name given by researchers to the male who is the most recent common patrilineal (male-lineage) ancestor of all living humans.

Major Y-chromosome haplogroups, and their geographical regions of occurrence (prior to the recent European colonization), include:

Dominant Y-chromosome haplogroups in pre-colonial world populations, with possible migrations routes according to the Coastal Migration Model.

Groups without mutation M168

Groups with mutation M168

(mutation M168 occurred ~50,000 bp)

  • Haplogroup C (M130) (Oceania, North/Central/East Asia, North America and a minor presence in South America, South Asia, West Asia, and Europe)
  • YAP+ haplogroups
    • Haplogroup DE (M1, M145, M203)
      • Haplogroup D (M174) (Tibet, Japan, the Andaman Islands)
      • Haplogroup E (M96)
        • Haplogroup E1b1a (V38) West Africa and surrounding regions; formerly known as E3a
        • Haplogroup E1b1b (M215) Associated with the Spread of Afro-Asiatic languages and Semitic people but also found in; East Africa, North Africa, the Middle East, the Mediterranean, the Balkans; formerly known as E3b

Groups with mutation M89

(mutation M89 occurred ~45,000 bp)

  • Haplogroup F (M89) Oceania, Europe, Asia, North- and South- America
  • Haplogroup G (M201) (present among many ethnic groups in Eurasia, usually at low frequency; most common in the Caucasus, the Iranian plateau, and Anatolia; in Europe mainly in Greece, Italy, Iberia, the Tyrol, Bohemia; extremely rare in Northern Europe)
  • Haplogroup H (M69) (India, Sri Lanka, Nepal, Pakistan, Iran, Central Asia, and Arabia)
  • Haplogroup IJK (L15, L16)

Groups with mutations L15 & L16

Groups with mutation M9

(mutation M9 occurred ~40,000 bp)

  • Haplogroup K
    • Haplogroup LT (L298/P326)
      • Haplogroup L (M11, M20, M22, M61, M185, M295) (South Asia, Central Asia, Southwestern Asia, the Mediterranean)
      • Haplogroup T (M70, M184/USP9Y+3178, M193, M272) (North Africa, Horn of Africa, Southwest Asia, the Mediterranean, South Asia); formerly known as Haplogroup K2
    • Haplogroup K(xLT) (rs2033003/M526)
Groups with mutation M526

Human mitochondrial DNA haplogroups

Human migrations and mitochondrial haplogroups.PNG

Human mtDNA haplogroups are lettered: A, B, C, CZ, D, E, F, G, H, HV, I, J, pre-JT, JT, K, L0, L1, L2, L3, L4, L5, L6, M, N, P, Q, R, R0, S, T, U, V, W, X, Y, and Z. The most up-to-date version of the mtDNA tree is maintained by Mannis van Oven on the PhyloTree website.[8]

Phylogenetic tree of human mitochondrial DNA (mtDNA) haplogroups

  Mitochondrial Eve (L)    
L0 L1–6
L1 L2 L3   L4 L5 L6
  M   N  
CZ D E G Q   O A S   R   I W X Y
C Z B F R0   pre-JT P  U

Mitochondrial Eve is the name given by researchers to the woman who is the most recent common matrilineal (female-lineage) ancestor of all living humans.

Defining populations

Map of human haplotype migration, according to mitochondrial DNA, with Key (coloured) indicating periods in numbered thousands of years before the present.

Haplogroups can be used to define genetic populations and are often geographically oriented. For example, the following are common divisions for mtDNA haplogroups:

The mitochondrial haplogroups are divided into 3 main groups, which are designated by the 3 sequential letters L, M, N. Humanity first split within the L group between L0 and L1-6. L1-6 gave rise to other L groups, one of which, L3, split into the M and N group. The M group comprises the first wave of human migration out of Africa, following an eastward route along southern coastal areas.

Descendent populations belonging to haplogroup M are found throughout East Africa, Asia, the Americas, and Melanesia, though almost none have been found in Europe. The N group may represent another migration out of Africa, heading northward instead of eastward. Shortly after the migration, the large R group split off from the N.

Haplogroup R consists of two subgroups defined on the basis of their geographical distributions, one found in southeastern Asia and Oceania and the other containing almost all of the modern European populations. Haplogroup N(xR), i.e. mtDNA that belongs to the N group but not to its R subgroup, is typical of Australian aboriginal populations, while also being present at low frequencies among many populations of Eurasia and the Americas.

The L type consists of nearly all Africans.

The M type consists of:

M1- Ethiopian, Somali and Indian populations. Likely due to much gene flow between the Horn of Africa and the Arabian Peninsula (Saudi Arabia, Yemen, Oman), separated only by a narrow strait between the Red Sea and the Gulf of Aden.

CZ- Many Siberians; branch C- Some Amerindian; branch Z- Many Saami, some Korean, some North Chinese, some Central Asian populations.

D- Some Amerindians, many Siberians and northern East Asians

E- Malay, Borneo, Philippines, Taiwanese aborigines, Papua New Guinea

G- Many Northeast Siberians, northern East Asians, and Central Asians

Q- Melanesian, Polynesian, New Guinean populations

The N type consists of:

A- Found in some Amerindians, Japanese, and Koreans

I- 10% frequency in Northern, Eastern Europe

S- Some Australian aborigines

W- Some Eastern Europeans, South Asians, and southern East Asians

X- Some Amerindians, Southern Siberians, Southwest Asians, and Southern Europeans

Y- Most Nivkhs and many Ainus; 1% in Southern Siberia

R- Large group found within the N type.Populations contained therein can be divided geographically into West Eurasia and East Eurasia. Almost all European populations and a large number of Middle-Eastern population today are contained within this branch. A smaller percentage is contained in other N type groups (See above). Below are subclades of R:

B- Some Chinese, Tibetans, Mongolians, Central Asians, Koreans, Amerindians, South Siberians, Japanese, Austronesians

F- Mainly found in southeastern Asia, especially Vietnam; 8.3% in Hvar Island in Croatia.[10]

R0- Found in Arabia and among Ethiopians and Somalis; branch HV (branch H; branch V)- Europe, Western Asia, North Africa;

Pre-JT- Arose in the Levant (modern Lebanon area), found in 25% frequency in Bedouin populations; branch JT (branch J; branch T)- North, Eastern Europe, Indus, Mediterranean

U- High frequency in West Eurasia, Indian sub-continent, and Algeria, found from India to the Mediterranean and to the rest of Europe; U5 in particular shows high frequency in Scandinavia and Baltic countries with the highest frequency in the Sami people.

Overlap between y-haplogroups and mt-haplogroups

The ranges of specific y-haplogroups and specific mt-haplogroups overlap, indicating populations that have a specific combination of a y-haplogroup and an mt-haplogroup. Y mutations and mt mutations do not necessarily occur at a similar time, and differential rates of sexual selection between the two genders combined with founder effect and genetic drift can alter the haplogroup composition of a population, so the overlaps are only rough.

The very rough overlaps between Y-DNA haplogroups and mtDNA haplogroups are as follows:

Y-DNA haplogroup(s) mtDNA haplogroup(s) Geographical area and/or peoples
A L0 Eastern and Southern Africa
B L1, L4 Eastern and Middle Africa
E L2, L3 Africa wide
D, O, N, C2 (formerly known as C3) CZ/C/Z, D, G (M types); A, N9/Y (N types); B, F (R types) East Asia, Siberia
K2b1, C1 (formerly known as CxC3), PxQR (In Timor and the Negritos of the Philippines) B, P (R types); N; Q (M type) as well as various Oceanian-specific M subclades Oceania
R, I, T, J, E (V13, M81, and M123 types) R0, HV/H/V, JT/J/T, U/K (R types), M1 (M type) Europe, West Asia, North Africa, Horn of Africa
H, R1a-z93, R2, L U2, U7 other subclades of R, subclades of M. South Asia
Q, C2 (formerly known as C3) A, X (N types); C, D (M types) Easternmost Siberia, the Americas

Y-chromosome and MtDNA geographic haplogroup assignation

Here is a list of Y-chromosome and MtDNA geographic haplogroup assignation proposed by Bekada et al. 2013.[11]


According to SNPS haplogroups which are the age of the first extinction event tend to be around 45–50 kya. Haplogroups of the second extinction event seemed to diverge 32–35 kya according to Mal'ta. The ground zero extinction event appears to be Toba during which haplogroup CDEF* appeared to diverge into C, DE and F. C and F have almost nothing in common while D and E have plenty in common. Extinction event #1 according to current estimates occurred after Toba, although older ancient DNA could push the ground zero extinction event to long before Toba, and push the first extinction event here back to Toba. Haplogroups with extinction event notes by them have a dubious origin and this is because extinction events lead to severe bottlenecks, so all notes by these groups are just guesses. Note that the SNP counting of ancient DNA can be highly variable meaning that even though all these groups diverged around the same time no one knows when.[12][13]

Origin Haplogroup Marker
Europe (Second Extinction Event?)IM170, M253, P259, M227, M507
EuropeI1bP215,M438, P37.2, M359, P41.2
EuropeI1cM223, M284, P78, P95
EuropeJ2a2M67, M166
EuropeJ2bM12,M102, M280, M241
EuropeR1b1b1aM412, P310
EuropeR1b1b1a1bU198, P312, S116
EuropeR1b1b1a1b3,4M65, M153
South Asia or MelanesiaC1(formerly known as CxC3)Z1426
North AsiaC2 (formerly known as C3)M217+
Indonesia or South Asia (First Extinction Event?)F M89, M282
Europe (Caucasus) (Second Extinction Event?)GM201, M285, P15, P16, M406
South AsiaHM69, M52, M82, M197, M370
Europe or Middle East (Second Extinction Event?)J1M304, M267, P58, M365, M368, M369
Europe or Middle East (Second Extinction Event?)J2M172, M410, M158, M319, DYS445=6, M339, M340
West of Burma in Eurasia (First Extinction Event?)[14]
Indonesia (First Extinction Event?) [14]K2 (NOPS) M526
South AsiaLM11, M20, M27, M76, M317, M274, M349, M357
East Asia, South East AsiaNM231, M214, LLY22g, Tat, M178
East Asia, South East Asia, South Asia (Second Extinction Event?)OM175, M119
Indonesia,Philippines (First Extinction Event?)P (xQR) 92R7, M207, M173, M45
South Asia, Siberia (Second Extinction Event?)R and Q (QR) split [14]MEH2, M242, P36.2, M25, M346
Middle East, Europe, Siberia,South AsiaR1a1M420, M17, M198, M204, M458
Anatolia, South East Europe ?R1bM173, M343, P25, M73
Europe R1b1bM269
Europe R1b1b1L23
Pakistan, India (Second Extinction Event?) R2M479, M124
Middle EastTM70
North AfricaE1b1b1aM78
North AfricaE1b1b1a1V12
North AfricaE1b1b1a1bV32
North AfricaE1b1b1a3V22
North AfricaE1b1b1a4V65
North AfricaE1b1b1bM81
West Africa, North AfricaAM91, M13
East AfricaBM60, M181, SRY10831.1, M150, M109, M112
Asia, AfricaDEM1, YAP, M174, M40, M96, M75, M98
East Asia,DM174
East Africa (Ancestor Split from E1b1a being second extinction event)E1b1b1 M35
East AfricaE1b1b1cM123, M34
West Africa (First Extinction Event?)E1a M33
East Africa (First Extinction Event is the split between E1b1 and E1a, second extinction event is the split between E1b1b and E1b1a)E1b1P2, M2, U175, M191
Middle EastR1b1aV88, M18


Origin Haplogroup
Middle East I
Middle EastA
Middle EastB
Middle EastC/Z
Middle EastD/G/M9/E
Middle EastF
Middle EastH*
Middle EastH13a1
Middle EastH14a
Middle EastH20
Middle EastH2a1
Middle EastH4
Middle EastH6b
Middle EastH8
Middle EastHV1
Middle EastI1
Middle EastJ / J1c / J2
Middle EastJ1a'b'e
Middle EastJ1b1a1
Middle EastJ1b2a
Middle EastJ1d / J2b
Middle EastJ1d1
Middle EastJ2a
Middle EastJ2a2a1
Middle EastK*
Middle EastK1a*
Middle EastK1b1*
Middle EastN1a*
Middle EastN1b
Middle EastN1c
Middle EastN2
Middle EastN9
Middle EastR*
Middle EastR0a
Middle EastT
Middle EastT1*
Middle EastT1a
Middle EastT2
Middle EastT2c
Middle EastT2i
Middle EastU1*
Middle EastU2*
Middle EastU2e
Middle EastU3*
Middle EastU4
Middle EastU4a*
Middle EastU7
Middle EastU8*
Middle EastU9a
Middle EastX
Middle EastX1a
Middle EastX2b1
North AfricaL3e5
North AfricaM1
North AfricaM1a1
North AfricaU6a
North AfricaU6a1'2'3
North AfricaU6b'c'd
East AfricaL0*
East AfricaL0a1
East AfricaL0a1b
East AfricaL0a2*
East AfricaL3c/L4/M
East AfricaL3d1a1
East AfricaL3d1d
East AfricaL3e1*
East AfricaL3f*
East AfricaL3h1b*
East AfricaL3i*
East AfricaL3x*
East AfricaL4a'b*
East AfricaL5*
East AfricaL6
East AfricaN* / M* / L3*
West AfricaL1b*
West AfricaL1b3
West AfricaL1c*
West AfricaL1c2
West AfricaL2*
West AfricaL2a
West AfricaL2a1*
West AfricaL2a1a2'3'4
West AfricaL2a1b
West AfricaL2a1b'f
West AfricaL2a1c1'2
West AfricaL2a1(16189)
West AfricaL2a2
West AfricaL2b*
West AfricaL2c1'2
West AfricaL2d
West AfricaL2e
West AfricaL3b
West AfricaL3b1a3
West AfricaL3b(16124!)
West AfricaL3b2a
West AfricaL3d*
West AfricaL3e2'3'4
West AfricaL3f1b*

See also


  1. By C. Barry Cox, Peter D. Moore, Richard Ladle. Wiley-Blackwell, 2016. ISBN 978-1-118-96858-1 p106. Biogeography: An Ecological and Evolutionary Approach
  2. Editorial Board, V&S Publishers, 2012, ISBN 9381588643 p137.Concise Dictionary of Science
  3. Arora, Devender; Singh, Ajeet; Sharma, Vikrant; Bhaduria, Harvendra Singh; Patel, Ram Bahadur (2015). "Hgs Db: Haplogroups Database to understand migration and molecular risk assessment". Bioinformation. 11 (6): 272–5. doi:10.6026/97320630011272. PMC 4512000Freely accessible. PMID 26229286.
  4. International Society of Genetic Genealogy 2015 Genetics Glossary
  5. "Haplogroup definition in DNA--NEWBIE GLOSSARY". The International Society of Genetic Genealogy.
  6. "Y Chromosome Consortium".
  7. Rootsi S, Magri C, Kivisild T, Benuzzi G, Help H, Bermisheva M, Kutuev I, Barać L, Pericić M, Balanovsky O, Pshenichnov A, Dion D, Grobei M, Zhivotovsky LA, Battaglia V, Achilli A, Al-Zahery N, Parik J, King R, Cinnioğlu C, Khusnutdinova E, Rudan P, Balanovska E, Scheffrahn W, Simonescu M, Brehm A, Goncalves R, Rosa A, Moisan JP, Chaventre A, Ferak V, Füredi S, Oefner PJ, Shen P, Beckman L, Mikerezi I, Terzić R, Primorac D, Cambon-Thomsen A, Krumina A, Torroni A, Underhill PA, Santachiara-Benerecetti AS, Villems R, Semino O (Jul 2004). "Phylogeography of Y-chromosome haplogroup I reveals distinct domains of prehistoric gene flow in europe" (PDF). American Journal of Human Genetics. 75 (1): 128–37. doi:10.1086/422196. PMC 1181996Freely accessible. PMID 15162323.
  8. "PhyloTree.org".
  9. Loogväli EL, Roostalu U, Malyarchuk BA, Derenko MV, Kivisild T, Metspalu E, et al. (2004). "Disuniting uniformity: a pied cladistic canvas of mtDNA haplogroup H in Eurasia". Mol. Biol. Evol. 21 (11): 2012–21. doi:10.1093/molbev/msh209. PMID 15254257.
  10. Tolk HV, Barac L, Pericic M, Klaric IM, Janicijevic B, Campbell H, Rudan I, Kivisild T, Villems R, Rudan P (Sep 2001). "The evidence of mtDNA haplogroup F in a European population and its ethnohistoric implications". European Journal of Human Genetics. 9 (9): 717–23. doi:10.1038/sj.ejhg.5200709. PMID 11571562.
  11. Bekada A, Fregel R, Cabrera VM, Larruga JM, Pestano J, Benhamamouch S, González AM (2013). "Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape". PLOS ONE. 8 (2): e56775. doi:10.1371/journal.pone.0056775. PMC 3576335Freely accessible. PMID 23431392.
  12. "Common genetic ancestors lived during roughly same time period". 1 Aug 2013. Retrieved 23 Jan 2015.
  13. Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A, Moltke I, Rasmussen S, Stafford TW, Orlando L, Metspalu E, Karmin M, Tambets K, Rootsi S, Mägi R, Campos PF, Balanovska E, Balanovsky O, Khusnutdinova E, Litvinov S, Osipova LP, Fedorova SA, Voevoda MI, DeGiorgio M, Sicheritz-Ponten T, Brunak S, Demeshchenko S, Kivisild T, Villems R, Nielsen R, Jakobsson M, Willerslev E (Jan 2014). "Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans". Nature. 505 (7481): 87–91. doi:10.1038/nature12736. PMC 4105016Freely accessible. PMID 24256729.
  14. 1 2 3 Karafet TM, Mendez FL, Sudoyo H, Lansing JS, Hammer MF (Mar 2015). "Improved phylogenetic resolution and rapid diversification of Y-chromosome haplogroup K-M526 in Southeast Asia". European Journal of Human Genetics. 23 (3): 369–73. doi:10.1038/ejhg.2014.106. PMID 24896152.
Wikimedia Commons has media related to Haplogroups.



all DNA haplogroups

Y-Chromosome - *http://www.scs.uiuc.edu/~mcdonald/WorldHaplogroupsMaps.pdf

Y chromosome DNA haplogroups

Mitochondrial DNA haplogroups


  1. "PhyloTree.org".
This article is issued from Wikipedia - version of the 11/25/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.