Developer(s) Geant4 Collaboration
Initial release 1998 (1998)[1]
Stable release
10.2 / December 4, 2015 (2015-12-04)
Operating system Cross-platform
Type Computational physics
License Geant4 Software License
Visualisation of a simulation. The detector is red and radiation is green.

Geant4 [1][2] (for GEometry ANd Tracking) is a platform for "the simulation of the passage of particles through matter," using Monte Carlo methods. It is the successor of the GEANT series of software toolkits developed by CERN, and the first to use object oriented programming (in C++). Its development, maintenance and user support are taken care by the international Geant4 Collaboration. Application areas include high energy physics and nuclear experiments, medical, accelerator and space physics studies. The software is used by a number of research projects around the world.

The Geant4 software and source code is freely available from the project web site; until version 8.1 (released June 30, 2006), no specific software license for its use existed; Geant4 is now provided under the Geant4 Software License.


Geant4 includes facilities for handling geometry, tracking, detector response, run management, visualization and user interface. For many physics simulations, this means less time needs to be spent on the low level details, and researchers can start immediately on the more important aspects of the simulation.

Following is a summary of each of the facilities listed above:

Geant4 can also perform basic histogramming; it requires external analysis tools or software that implements the AIDA framework for exploiting advanced histogramming features.

Since release 10.0, Geant4 implements multithreading, making use of thread-local storage to allow for efficient generation of simulated events in parallel.

Some high energy physics experiments using Geant4

Applications outside high energy physics

GEANT4 simulation of relativistic electron avalanche driven by an electric field in air as might occur in thunderstorms and lightning.

Because of its general purpose nature, Geant4 is well suited for development of computational tools for analysing interactions of particle with matter in many areas. These include:

See also


  1. 1 2 Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; et al. (2003). "Geant4—a simulation toolkit". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 506 (3): 250. Bibcode:2003NIMPA.506..250A. doi:10.1016/S0168-9002(03)01368-8.
  2. Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; Cirrone, G.A.P.; Cooperman, G.; Cosmo, G.; Cuttone, G.; Daquino, G.G.; Donszelmann, M.; Dressel, M.; Folger, G.; Foppiano, F.; Generowicz, J.; Grichine, V.; Guatelli, S.; Gumplinger, P.; Heikkinen, A.; Hrivnacova, I.; Howard, A.; Incerti, S.; Ivanchenko, V.; Johnson, T.; et al. (2006). "Geant4 developments and applications". IEEE Transactions on Nuclear Science. 53: 270. Bibcode:2006ITNS...53..270A. doi:10.1109/TNS.2006.869826.

External links

This article is issued from Wikipedia - version of the 10/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.