Dimethylsulfoniopropionate

Dimethylsulfoniopropionate
Skeletal formula of dimethylsulfoniopropionate
Ball-and-stick model of the dimethylsulfoniopropionate zwitterion
Names
IUPAC name
(Dimethylsulfaniumyl)propanoate
Other names
dimethyl-β-propiothetin
Identifiers
7314-30-9 YesY
3D model (Jmol) Interactive image
ChemSpider 22195 N
ECHA InfoCard 100.228.826
PubChem 23736
Properties
C5H10O2S
Molar mass 134.1967
Appearance white crystalline hygroscopic powder with a characteristic odor.[1]
Melting point 120 to 125 °C (248 to 257 °F; 393 to 398 K)[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Dimethylsulfoniopropionate (DMSP), is an organosulfur compound with the formula (CH3)2S+CH2CH2COO. This zwitterionic metabolite can be found in marine phytoplankton, seaweeds, and some species of terrestrial and aquatic vascular plants. It functions as an osmolyte as well as several other physiological and environmental roles have also been identified.[3] DMSP was first identified in the marine red alga Polysiphonia fastigiata by Frederick Challenger and Margaret Simpson (later Dr. Whitaker) [4]

Biosynthesis

In higher plants, DMSP is biosynthesized from S-methylmethionine. Two intermediates in this conversion are dimethylsulfoniumpropylamine and dimethylsulfoniumpropionaldehyde.[5] In algae, however, the biosynthesis starts with removal of the amino group from methionine, rather than from S-methylmethionine.

Degradation

DMSP is broken down by marine microbes to form two major volatile sulfur products, each with distinct effects on the environment. One of its breakdown products is methanethiol (CH3SH), which is assimilated by bacteria into protein sulfur. Another volatile breakdown product is dimethyl sulfide (CH3SCH3; DMS). There is evidence that DMS in seawater can be produced by cleavage of dissolved (extracellular) DMSP[6][7] by the enzyme DMSP-lyase, although many non-marine species of bacteria convert methanethiol to DMS.

DMS is also taken up by marine bacteria, but not as rapidly as methanethiol. Although DMS usually consists of less than 25% of the volatile breakdown products of DMSP, the high reactivity of methanethiol makes the steady-state DMS concentrations in seawater approximately 10 times those of methanethiol (~3 nM vs. ~0.3 nM). Curiously, there have never been any published correlations between the concentrations of DMS and methanethiol. This is probably due to the non-linear abiotic and microbial uptake of methanethiol in seawater, and the comparatively low reactivity of DMS. However, a significant portion of DMS in seawater is oxidized to dimethyl sulfoxide (DMSO).

Relevant to global climate, DMS is thought to play a role in the Earth's heat budget by decreasing the amount of solar radiation that reaches the Earth's surface. This occurs through degradation of DMS in the atmosphere into hygroscopic compounds that condense water vapor leading to the formation of clouds.[8]

DMSP has also been implicated in influencing the taste and odour characteristics of various products. For example, although DMSP is odourless and tasteless, it is accumulated at high levels in some marine herbivores or filter feeders. Increased growth rates, vigour and stress resistance among animals cultivated on such diets have been reported. DMS, is responsible for repellent, 'off' tastes and odours that develop in some seafood products because of the action of bacterial DMSP-lyase, which cogenerates acrylate.

See also

References

  1. http://tianyuchem.en.alibaba.com/product/538880245-213360543/FACTORYSALE_Dimethylpropiothetin_7314_30_9.html
  2. http://tianyuchem.en.alibaba.com/product/538880245-213360543/FACTORYSALE_Dimethylpropiothetin_7314_30_9.html
  3. DeBose, Jennifer L.; Sean C. Lema; Gabrielle A. Nevitt (2008-03-07). "Dimethylsulfoniopropionate as a foraging cue for reef fishes" (abstract). Science. 319 (5868): 1356. doi:10.1126/science.1151109. PMID 18323445. Retrieved 2008-03-21.Vila-Costa, Maria; Rafel Simo; Hyakubun Harada; Josep M. Gasol; Doris Slezak; Ronald P. Kiene (2006-10-27). "Dimethylsulfoniopropionate uptake by marine phytoplankton" (abstract). Science. 314 (5799): 652–654. doi:10.1126/science.1131043. PMID 17068265. Retrieved 2008-03-21.
  4. Challenger, Frederick; Margaret Isabel Simpson (2014-07-14). "Studies on biological methylation. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts." (pdf). Journal of the Chemical Society (London). 1948: 1591–1597. doi:10.1039/JR9480001591. PMID 18101461. Retrieved 2014-07-14.
  5. Scott D. McNeil, Michael L. Nuccio, and Andrew D. Hanson "Betaines and Related Osmoprotectants. Targets for Metabolic Engineering of Stress Resistance" Plant Physiology, August 1999, Vol. 120, pp. 945–949. doi:10.1104/pp.120.4.945
  6. "Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea". Archives of Microbiology. 160:312-318. 1993.
  7. "Dimethylsulfoniopropionate: Its sources, role in the marine food web, and biological degradation to dimethylsulfide". Appl. Env. Microbiol. 68:5804-15. 2002.
  8. http://www.whoi.edu/oceanus/feature/dms--the-climate-gas-youve-never-heard-of
This article is issued from Wikipedia - version of the 10/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.