This article is about the particle accelerator. For other uses, see Collider (disambiguation).

A collider is a type of particle accelerator involving directed beams of particles. Colliders may either be ring accelerators or linear accelerators, and may collide a single beam of particles against a stationary target or two beams head-on.

Colliders are used as a research tool in particle physics by accelerating particles to very high kinetic energy and letting them impact other particles. Analysis of the byproducts of these collisions gives scientists good evidence of the structure of the subatomic world and the laws of nature governing it. These may become apparent only at high energies and for tiny periods of time, and therefore may be hard or impossible to study in other ways.


In particle physics one gains knowledge about elementary particles by accelerating particles to very high kinetic energy and letting them impact on other particles. For sufficiently high energy, a reaction occurs that transforms the particles into other particles. Detecting these products gives insight into the physics involved.

To do such experiments there are two possible setups:

The collider setup is harder to construct but has the great advantage that according to special relativity the energy of an inelastic collision between two particles approaching each other with a given velocity is not just 4 times as high as in the case of one particle resting (as it would be in non-relativistic physics); it can be orders of magnitude higher if the collision velocity is near the speed of light.

In the case of a collider where the collision point is at rest in the laboratory frame (i.e. ), the center of mass energy (the energy available for producing new particles in the collision) is simply , where and is the total energy of a particle from each beam. For a fixed target experiment where particle 2 is at rest, .[1]


The first serious proposal for a collider originated with a group at the Midwestern Universities Research Association (MURA). This group proposed building two tangent radial-sector FFAG accelerator rings.[2] Tihiro Ohkawa, one of the authors of the first paper, went on to develop a radial-sector FFAG accelerator design that could accelerate two counterrotating particle beams within a single ring of magnets.[3][4] The third FFAG prototype built by the MURA group was a 50 MeV electron machine built in 1961 to demonstrate the feasibility of this concept.

Gerard K. O'Neill proposed using a single accelerator to inject particles into a pair of tangent storage rings. As in the original MURA proposal, collisions would occur in the tangent section. The benefit of storage rings is that the storage ring can accumulate a high beam flux from an injection accelerator that achieves a much lower flux.[5]

The first electron-positron colliders were built in late 1950's-early 1960's in Italy, at the Istituto Nazionale di Fisica Nucleare in Frascati near Rome, by the Austrian-Italian physicist Bruno Touschek and in the US, by the Stanford-Princeton team that included William C.Barber, Bernard Gittelman, Gerry O’Neill, and Burton Richter. Around the same time, in the early 1960s, the VEP-1 electron-electron collider was independently developed and built under supervision of Gersh Budker in the Soviet Institute of Nuclear Physics.[6]

In 1966, work began on the Intersecting Storage Rings at CERN, and in 1971, this collider was operational.[7] The ISR was a pair of storage rings that accumulated particles injected by the CERN Proton Synchrotron. This was the first hadron collider, as all of the earlier efforts had worked with electrons or with electrons and positrons.

In 1968 construction began on the accelerator complex for the Tevatron at Fermilab. In 1986 the first proton antiproton collisions were recorded at a center of mass energy of 1.8 TeV, making it the highest energy collider in the world, at the time.

The most high-energetic collider in the world (as of 2016) is the Large Hadron Collider (LHC) at CERN. There are several particle collider projects currently under consideration.[8][9]

Operating colliders

Sources: Information was taken from the website Particle Data Group[10] and Handbook of accelerator physics and engineering.[11]

Accelerator Centre, city, country First operation accelerated particles max energy per beam, GeV Luminosity, 1030 cm−2 s−1 Perimeter (length), km
VEPP-2000 INP, Novosibirsk, Russia 2006 е+e 1.0 100 0.024
VEPP-4М INP, Novosibirsk, Russia 1994 е+e 6 20 0.366
BEPC II IHEP, Beijing, China 2008 е+е 3.7 700 0.240
DAFNE Frascati, Italy 1999 е+е 0.7 436[12] 0.098
KEKB KEK, Tsukuba, Japan 1999 е+е 8.5 (e-), 4 (e+) 21100 3.016
RHIC BNL, United States 2000 pp, Au-Au, Cu-Cu, d-Au 100/n 10, 0.005, 0.02, 0.07 3.834
LHC CERN 2008 pp,
Pb-Pb, p-Pb
6500 (planned 7000),
2560/n (planned 2760/n)
0.003, 0.13

See also


  1. Herr, Werner; Muratori, Bruno (2003). "Concept of Luminosity". CERN Accelerator School: 361–378. Retrieved 2 November 2016.
  2. Kerst, D. W.; Cole, F. T.; Crane, H. R.; Jones, L. W.; et al. (1956). "Attainment of Very High Energy by Means of Intersecting Beams of Particles". Physical Review. 102 (2): 590–591. Bibcode:1956PhRv..102..590K. doi:10.1103/PhysRev.102.590.
  3. US patent 2890348, Tihiro Ohkawa, "Particle Accelerator", issued 1959-06-09
  4. Science: Physics & Fantasy, Time, Monday, Feb. 11, 1957.
  5. O'Neill, G. (1956). "Storage-Ring Synchrotron: Device for High-Energy Physics Research" (PDF). Physical Review. 102 (5): 1418–1419. Bibcode:1956PhRv..102.1418O. doi:10.1103/PhysRev.102.1418.
  6. Shiltsev, V. (2013). "The first colliders: AdA, VEP-1 and Princeton-Stanford". arXiv:1307.3116Freely accessible [physics.hist-ph].
  7. Kjell Johnsen, The ISR in the time of Jentschke, CERN Courier, June 1, 2003.
  8. Shiltsev, V. "High energy particle colliders: past 20 years, next 20 years and beyond, Physics-Uspekhi 55.10 (2012) 965". doi:10.3367/UFNe.0182.201210d.1033/meta (inactive 2016-07-13).
  9. Shiltsev, V. (2015). "Crystal Ball: On the Future High Energy Colliders". Proceedings of the European Physical Society Conference on High Energy Physics (EPS-HEP2015). 22–29 July 2015. Vienna: 515. arXiv:1511.01934Freely accessible. Bibcode:2015ehep.confE.515S.
  10. High Energy Collider Parameters
  11. Handbook of accelerator physics and engineering, edited by A. Chao, M. Tigner, 1999, p. 11.
  12. DAFNE Achievements

External links

This article is issued from Wikipedia - version of the 11/3/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.