Closeness (mathematics)

Closeness is a basic concept in topology and related areas in mathematics. Intuitively we say two sets are close if they are arbitrarily near to each other. The concept can be defined naturally in a metric space where a notion of distance between elements of the space is defined, but it can be generalized to topological spaces where we have no concrete way to measure distances.

Note the difference between closeness, which describes the relation between two sets, and closedness, which describes a single set.

The closure operator closes a given set by mapping it to a closed set which contains the original set and all points close to it. The concept of closeness is related to limit point.


Given a metric space a point is called close or near to a set if


where the distance between a point and a set is defined as


Similarly a set is called close to a set if




Closeness relation between a point and a set

Let and be two sets and a point.[1]

Closeness relation between two sets

Let , and be sets.

Generalized definition

The closeness relation between a set and a point can be generalized to any topological space. Given a topological space and a point , is called close to a set if .

To define a closeness relation between two sets the topological structure is too weak and we have to use a uniform structure. Given a uniform space, sets A and B are called close to each other if they intersect all entourages, that is, for any entourage U, (A×B)∩U is non-empty.

See also


  1. Arkhangel'skii, A. V. General Topology I: Basic Concepts and Constructions Dimension Theory. Encyclopaedia of Mathematical Sciences (Book 17), Springer 1990, p. 9
This article is issued from Wikipedia - version of the 2/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.