Blade (geometry)

In the study of geometric algebras, a blade is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is any object that can be expressed as the exterior product (informally wedge product) of k vectors, and is of grade k.

In detail:[1]

For an n-dimensional space, there are blades of all grades from 0 to n inclusive. A vector subspace of finite dimension k may be represented by the k-blade formed as a wedge product of all the elements of a basis for that subspace.[6]

Examples

For example, in 2-dimensional space scalars are described as 0-blades, vectors are 1-blades, and area elements are 2-blades known as pseudoscalars, in that they are elements of a one-dimensional space distinct from regular scalars.

In three-dimensional space, 0-blades are again scalars and 1-blades are three-dimensional vectors, and 2-blades are oriented area elements. 3-blades represent volume elements and in three-dimensional space; these are scalar-like—i.e., 3-blades in three-dimensions form a one-dimensional vector space.

See also

Notes

  1. Marcos A. Rodrigues (2000). "§1.2 Geometric algebra: an outline". Invariants for pattern recognition and classification. World Scientific. p. 3 ff. ISBN 981-02-4278-6.
  2. William E Baylis (2004). "§4.2.3 Higher-grade multivectors in Cℓn: Duals". Lectures on Clifford (geometric) algebras and applications. Birkhäuser. p. 100. ISBN 0-8176-3257-3.
  3. Lengyel, Eric (2016). Foundations of Game Engine Development, Volume 1: Mathematics. Terathon Software LLC. ISBN 978-0-9858117-4-7.
  4. John A. Vince (2008). Geometric algebra for computer graphics. Springer. p. 85. ISBN 1-84628-996-3.
  5. For Grassmannians (including the result about dimension) a good book is: Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley Classics Library, New York: John Wiley & Sons, ISBN 978-0-471-05059-9, MR 1288523. The proof of the dimensionality is actually straightforward. Take k vectors and wedge them together and perform elementary column operations on these (factoring the pivots out) until the top k × k block are elementary basis vectors of . The wedge product is then parametrized by the product of the pivots and the lower k × (nk) block.
  6. David Hestenes (1999). New foundations for classical mechanics: Fundamental Theories of Physics. Springer. p. 54. ISBN 0-7923-5302-1.

General references

External links

This article is issued from Wikipedia - version of the 10/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.