Baghouse

Baghouse dust collector for asphalt plants[1]

A baghouse (BH, B/H), bag filter (BF) or fabric filter (FF) is an air pollution control device that removes particulates out of air or gas released from commercial processes or combustion for electricity generation.[2] Power plants, steel mills, pharmaceutical producers, food manufacturers, chemical producers and other industrial companies often use baghouses to control emission of air pollutants.[3] Baghouses came into widespread use in the late 1970s after the invention of high-temperature fabrics (for use in the filter media) capable of withstanding temperatures over 350 °F.[4]

Unlike electrostatic precipitators, where performance may vary significantly depending on process and electrical conditions, functioning baghouses typically have a particulate collection efficiency of 99% or better, even when particle size is very small.

Operation

Most baghouses use long, cylindrical bags (or tubes) made of woven or felted fabric as a filter medium. (For applications where there is relatively low dust loading and gas temperatures are 250 °F or less, pleated, nonwoven cartridges are sometimes used as filtering media instead of bags.)[5][6] Dust-laden gas or air enters the baghouse through hoppers (large funnel-shaped containers used for storing and dispensing particulate) and is directed into the baghouse compartment. The gas is drawn through the bags, either on the inside or the outside depending on cleaning method, and a layer of dust accumulates on the filter media surface until air can no longer move through it. When sufficient pressure drop (delta P) occurs, the cleaning process begins. Cleaning can take place while the baghouse is online (filtering) or is offline (in isolation). When the compartment is clean, normal filtering resumes.[7]

Baghouses are very efficient particulate collectors because of the dust cake formed on the surface of the bags. The fabric provides a surface on which dust collects through the following four mechanisms:[8]

A combination of these mechanisms results in formation of the dust cake on the filter, which eventually increases the resistance to gas flow. The filter must be cleaned periodically.

Baghouse types - Cleaning methods

Mechanical Shaker Baghouse
Reverse Air Baghouse
Reverse Jet Baghouse

Baghouses are classified by the cleaning method used. The three most common types of baghouses are mechanical shakers, reverse gas, and pulse jet.[9]

Mechanical shakers

In mechanical-shaker baghouses, tubular filter bags are fastened onto a cell plate at the bottom of the baghouse and suspended from horizontal beams at the top. Dirty gas enters the bottom of the baghouse and passes through the filter, and the dust collects on the inside surface of the bags.

Cleaning a mechanical-shaker baghouse is accomplished by shaking the top horizontal bar from which the bags are suspended. Vibration produced by a motor-driven shaft and cam creates waves in the bags to shake off the dust cake.

Shaker baghouses range in size from small, handshaker devices to large, compartmentalized units. They can operate intermittently or continuously. Intermittent units can be used when processes operate on a batch basis-when a batch is completed, the baghouse can be cleaned. Continuous processes use compartmentalized baghouses; when one compartment is being cleaned, the airflow can be diverted to other compartments.

In shaker baghouses, there must be no positive pressure inside the bags during the shake cycle. Pressures as low as 0.02 in. wg can interfere with cleaning.

The air to cloth ratio for shaker baghouses is relatively low, hence the space requirements are quite high. However, because of the simplicity of design, they are popular in the minerals processing industry.

Reverse air (R/A)

In reverse-air baghouses, the bags are fastened onto a cell plate at the bottom of the baghouse and suspended from an adjustable hanger frame at the top. Dirty gas flow normally enters the baghouse and passes through the bag from the inside, and the dust collects on the inside of the bags.

Reverse-air baghouses are compartmentalized to allow continuous operation. Before a cleaning cycle begins, filtration is stopped in the compartment to be cleaned. Bags are cleaned by injecting clean air into the dust collector in a reverse direction, which pressurizes the compartment. The pressure makes the bags collapse partially, causing the dust cake to crack and fall into the hopper below. At the end of the cleaning cycle, reverse airflow is discontinued, and the compartment is returned to the main stream.

The flow of the dirty gas helps maintain the shape of the bag. However, to prevent total collapse and fabric chafing during the cleaning cycle, rigid rings are sewn into the bags at intervals.

Space requirements for a reverse-air baghouse are comparable to those of a shaker baghouse; however, maintenance needs are somewhat greater.

Pulse jet (aka Reverse Jet)

In reverse-pulse-jet baghouses, individual bags are supported by a metal cage (filter cage), which is fastened onto a cell plate at the top of the baghouse. Dirty gas enters from the bottom of the baghouse and flows from outside to inside the bags. The metal cage prevents collapse of the bag.

Bags are cleaned by a short burst of compressed air injected through a common manifold over a row of bags. The compressed air is accelerated by a venturi nozzle mounted at the reverse-jet baghouse top of the bag. Since the duration of the compressed-air burst is short (0.1s), it acts as a rapidly moving air bubble, traveling through the entire length of the bag and causing the bag surfaces to flex. This flexing of the bags breaks the dust cake, and the dislodged dust falls into a storage hopper below.

Reverse-pulse-jet dust collectors can be operated continuously and cleaned without interruption of flow because the burst of compressed air is very small compared with the total volume of dusty air through the collector. Because of this continuous-cleaning feature, reverse-jet dust collectors are usually not compartmentalized.

The short cleaning cycle of reverse-jet collectors reduces recirculation and redeposit of dust. These collectors provide more complete cleaning and reconditioning of bags than shaker or reverse-air cleaning methods. Also, the continuous-cleaning feature allows them to operate at higher air-to-cloth ratios, so the space requirements are lower.

This cleaning system works with the help of digital sequential timer attached to the fabric filter. this timer indicates the solenoid valve to inject the air to the blow pipe.

Cleaning method comparison

Type Advantages Disadvantages
Shaker Have high collection efficiency for respirable dust Have low air-to-cloth ratio (1.5 to 2 ft/min)
Can use strong woven bags, which can withstand intensified cleaning cycle to reduce residual dust buildup Cannot be used in high temperatures
Simple to operate Require large amounts of space
Have low pressure drop for equivalent collection efficiencies Need large numbers of filter bags
Consist of many moving parts and require frequent maintenance
Personnel must enter baghouse to replace bags, creating potential for exposure to toxic dust
Can result in reduced cleaning efficiency if even a slight positive pressure exists inside bags
Reverse air Have high collection efficiency for respirable dust Have low air-to-cloth ratio (1 to 2 ft/min)
Are preferred for high temperatures due to gentle cleaning action Require frequent cleaning because of gentle cleaning action
Have low pressure drop for equivalent collection efficiencies Have no effective way to remove residual dust buildup
Cleaning air must be filtered
Require personnel to enter baghouse to replace bags which creates potential for toxic dust exposure
Pulse jet (Reversed Jet) Have high collection efficiency for respirable dust Require use of dry compressed air
Can have high air-to-cloth ratio (6 to 10 ft/min) May not be used readily in high temperatures unless special fabrics are used
Have increased efficiency and minimal residual dust buildup due to aggressive cleaning action Cannot be used if high moisture content or humidity levels are present in the exhaust gases
Can clean continuously
Can use strong woven bags
Have lower bag wear
Have small size and fewer bags because of high air-to-cloth ratio
Some designs allow bag changing without entering baghouse
Have low pressure drop for equivalent collection efficiencies

Cleaning considerations

Sonic horns

Some baghouses have sonic horns installed to provide supplementary vibration cleaning energy. The horns, which generate high intensity, low frequency sounds waves, are turned on just before or at the start of the cleaning cycle to help break the bonds between particles on the filter media surface and aid in dust removal.

Cleaning sequences

Two main sequence types are used to clean baghouses:

Intermittently cleaned baghouses are composed of many compartments or sections. One at a time, each compartment is periodically closed off from the incoming dirty gas stream, cleaned, and then brought back online. While the individual compartment is out of place, the gas stream is diverted from the compartment’s area. This makes shutting down the production process unnecessary during cleaning cycles.

Continuously cleaned baghouse compartments are always online for automatic filtering. A blast of compressed air momentarily interrupts the collection process to clean the bag. This is known as pulse jet cleaning. Pulse jet cleaning does not require taking compartments offline. Continuously cleaned baghouses are designed to prevent complete shutdown during bag maintenance and failures to the primary system.

Performance

Baghouse performance is contingent upon inlet and outlet gas temperature, pressure drop, opacity, and gas velocity. The chemical composition, moisture, acid dew point, and particle loading and size distribution of the gas stream are essential factors as well

Design variables

Pressure drop, filter drag, air-to-cloth ratio, and collection efficiency are essential factors in the design of a baghouse.

Filter Media

Fabric filter bags (sometimes referred to as envelopes) are oval or round tubes, typically 15–30 feet and 5 to 12 inches in diameter, made of woven or felted material.[10] Depending on chemical and/or moisture content of the gas stream, its temperature, and other conditions, bags may be constructed out of cotton, nylon, polyester, fiberglass or other materials.[11]

Nonwoven materials are either felted or membrane. Nonwoven materials are attached to a woven backing (scrim). Felted filters contain randomly placed fibers supported by a woven backing material (scrim). In a membrane filter, a thin, porous membrane is bound to the scrim. High energy cleaning techniques such as pulse jet require felted fabrics.

Woven filters have a definite repeated pattern. Low energy cleaning methods such as shaking or reverse air allow for woven filters. Various weaving patterns such as plain weave, twill weave, or sateen weave, increase or decrease the amount of space between individual fibers. The size of the space affects the strength and permeability of the fabric. A tighter weave corresponds with low permeability and, therefore, more efficient capture of fine particles.

Reverse air bags have anti-collapse rings sewn into them to prevent pancaking when cleaning energy is applied. Pulse jet filter bags are supported by a metal cage, which keeps the fabric taut. To lengthen the life of filter bags, a thin layer of PTFE (teflon) membrane may be adhered to the filtering side of the fabric, keeping dust particles from becoming embedded in the filter media fibers.[12]

Some baghouses use pleated cartridge filters,[13] similar to what is found in home air filtration systems.

Components

See also

Electrostatic Precipitator

Dust Collector

SmartAsh

References

  1. "Baghouse Dust Collector".
  2. "Baghouse filter installation manifold - US Patent 5636422 Description". Patentstorm.us. Archived from the original on 13 October 2012. Retrieved 6 August 2013.
  3. "What is a Baghouse". Baghouse.net. Archived from the original on 24 July 2013. Retrieved 6 August 2013.
  4. "Baghouse / Fabric Filters KnowledgeBase". Neundorfer.com. Retrieved 6 August 2013.
  5. Courtenay, John; Bryant, Michaek (July–August 2008). "Pleated cartridges provide increased baghouse capacity and improved filter performance" (PDF). Aluminium Times. Archived from the original (PDF) on 28 March 2012. Retrieved 6 August 2013.
  6. "Cartridge Collectors". Baghouse.com. Retrieved 6 August 2013.
  7. Beachler, David S.; Joseph, Jerry; Pompelia, Mick (1995). "Fabric Filter Operation Overview" (PDF). North Carolina State University. Archived from the original (PDF) on 9 November 2013. Retrieved 6 August 2013.
  8. Noyes, Robert (1991). Handbook of Pollution Control Processes. Noyes Publications. ISBN 9780815512905. Retrieved 6 August 2013.
  9. Beachler, David S.; Joseph, Jerry; Pompelia, Mick (1995). "Lesson 2: Fabric Filter Bag Cleaning" (PDF). North Carolina State University. Archived from the original (PDF) on 9 November 2013. Retrieved 6 August 2013.
  10. Beachler, David S.; Joseph, Jerry; Pompelia, Mick (1995). "Lesson 4:Fabric Filter Materials" (PDF). North Carolina State University. Retrieved 6 August 2013.
  11. "Filter Media Selection Chart". Air Pollution Control. Archived from the original on 9 August 2012. Retrieved 6 August 2013.
  12. "PTFE Membrane Baghouse Filters". Baghouse.com. Retrieved 6 August 2013.
  13. "Pleat+Plus Pleated Filter Bags". Midwesco Filter Resources, Inc. Midwesco Filter Resources, Inc. Archived from the original on 2 June 2013. Retrieved 6 August 2013.

External links

This article is issued from Wikipedia - version of the 10/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.