Achilles number

Demonstration, with Cuisenaire rods, of the number 72 being powerful

An Achilles number is a number that is powerful but not a perfect power.[1] A positive integer n is a powerful number if, for every prime factor p of n, p2 is also a divisor. In other words, every prime factor appears at least squared in the factorization. All Achilles numbers are powerful. However, not all powerful numbers are Achilles numbers: only those that cannot be represented as mk, where m and k are positive integers greater than 1.

Achilles numbers were named by Henry Bottomley after Achilles, a hero of the Trojan war, who was also powerful but imperfect. Strong Achilles numbers are Achilles numbers whose Euler totients are also Achilles numbers.[2]

Sequence of Achilles numbers

A number n = p1a1p2a2pkak is powerful if min(a1, a2, …, ak) ≥ 2. If in addition gcd(a1, a2, …, ak) = 1 the number is an Achilles number.

The Achilles numbers up to 5000 are:

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000 (sequence A052486 in the OEIS).

The smallest pair of consecutive Achilles numbers is:[3]

5425069447 = 73 × 412 × 972
5425069448 = 23 × 260412

Examples

108 is a powerful number. Its prime factorization is 22 · 33, and thus its prime factors are 2 and 3. Both 22 = 4 and 32 = 9 are divisors of 108. However, 108 cannot be represented as mk, where m and k are positive integers greater than 1, so 108 is an Achilles number.

360 is not an Achilles number because it is not powerful. One of its prime factors is 5 but 360 is not divisible by 52 = 25.

Finally, 784 is not an Achilles number. It is a powerful number, because not only are 2 and 7 its only prime factors, but also 22 = 4 and 72 = 49 are divisors of it. Nonetheless, it is a perfect power:

So it is not an Achilles number.

References

  1. Weisstein, Eric W. "Achilles Number". MathWorld.
  2. Project Euler problem 302
  3. Carlos Rivera, The Prime Puzzles and Problem Connection, Problem 53


This article is issued from Wikipedia - version of the 5/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.