15 Leonis Minoris

15 Leonis Minoris


Location of 15 Leo Minoris (circled)

Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Ursa Major[1]
Right ascension 09h 48m 35.37090s[2]
Declination +46° 01 15.6312[2]
Apparent magnitude (V) 5.12[3]
Characteristics
Spectral type G0 IV-V[4]
U−B color index +0.175[3]
B−V color index +0.625[3]
Astrometry
Radial velocity (Rv)5.20[5] km/s
Proper motion (μ) RA: 221.66[2] mas/yr
Dec.: −92.47[2] mas/yr
Parallax (π)54.44 ± 0.28[2] mas
Distance59.9 ± 0.3 ly
(18.37 ± 0.09 pc)
Absolute magnitude (MV)3.75[6]
Details
Mass1.15[7] M
Radius1.52[8] R
Surface gravity (log g)4.04[4] cgs
Temperature5,859[4] K
Metallicity [Fe/H]0.01[4] dex
Rotational velocity (v sin i)3.97[9] km/s
Age9.3[10] Gyr
Other designations
15 LMi, BD+46° 1551, FK5 1255, GJ 368, HD 84737, HIP 48113, HR 3881, SAO 43046.[11]

15 Leonis Minoris is the Flamsteed designation for a single[12] star in the northern constellation of Ursa Major. It has an apparent visual magnitude of 5.12,[3] making it a fifth magnitude star that is visible to the naked eye. The star has been examined for an infrared excess, but none was detected.[13]

This star has a stellar classification of G0 IV-V[4] with an age of about 9.3 billion years,[10] which suggests that it is an older G-type main sequence star that may be evolving into a subgiant as the hydrogen at its core runs out. The disk of the star has an angular diameter of 0.81±0.01 mas.[14] At an estimated distance of 18.37 parsecs (59.9 light-years) based on parallax measurements,[2] this yields a physical size of about 1.6 times the radius of the Sun.[15] The estimated mass of the star is 15% greater than the Sun's mass.[7] The effective temperature of the stellar atmosphere is around 5,859 K,[4] giving it the yellow-hued glow of a G-type star.[16]

References

  1. Hoffleit, D. (1979). "Discordances in Star Designations". Bulletin d'Information du Centre de Donnees Stellaires. 17: 38. Bibcode:1979BICDS..17...38H.
  2. 1 2 3 4 5 6 van Leeuwen, F. (2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics, 474 (2): 653–664, arXiv:0708.1752Freely accessible, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357.
  3. 1 2 3 4 Mermilliod, J.-C. (1986), "Compilation of Eggen's UBV data, transformed to UBV (unpublished)", SIMBAD Astronomical Database, Bibcode:1986EgUBV........0M.
  4. 1 2 3 4 5 6 Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770Freely accessible, Bibcode:2006AJ....132..161G, doi:10.1086/504637.
  5. Nidever, David L.; et al. (August 2002), "Radial Velocities for 889 Late-Type Stars", The Astrophysical Journal Supplement Series, 141 (2): 503–522, arXiv:astro-ph/0112477Freely accessible, Bibcode:2002ApJS..141..503N, doi:10.1086/340570.
  6. Luck, R. Earle; Heiter, Ulrike (2006), "Dwarfs in the Local Region", The Astronomical Journal, 131 (6): 3069–3092, Bibcode:2006AJ....131.3069L, doi:10.1086/504080.
  7. 1 2 Ramírez, I.; et al. (September 2012), "Lithium Abundances in nearby FGK Dwarf and Subgiant Stars: Internal Destruction, Galactic Chemical Evolution, and Exoplanets", The Astrophysical Journal, 756 (1): 46, arXiv:1207.0499Freely accessible, Bibcode:2012ApJ...756...46R, doi:10.1088/0004-637X/756/1/46.
  8. Takeda, Genya; Ford, Eric B.; Sills, Alison; Rasio, Frederic A.; Fischer, Debra A.; Valenti, Jeff A. (2007). "Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog". The Astrophysical Journal Supplement Series. 168 (2): 297. Bibcode:2007ApJS..168..297T. doi:10.1086/509763.
  9. Martínez-Arnáiz, R.; et al. (September 2010), "Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter", Astronomy and Astrophysics, 520: A79, arXiv:1002.4391Freely accessible, Bibcode:2010A&A...520A..79M, doi:10.1051/0004-6361/200913725.
  10. 1 2 Ballering, Nicholas P.; et al. (September 2013), "A Trend between Cold Debris Disk Temperature and Stellar Type: Implications for the Formation and Evolution of Wide-orbit Planets", The Astrophysical Journal, 775 (1): 14, arXiv:1308.2223Freely accessible, Bibcode:2013ApJ...775...55B, doi:10.1088/0004-637X/775/1/55, 55.
  11. "15 LMi -- High proper-motion Star", SIMBAD Astronomical Database, Centre de Données astronomiques de Strasbourg, retrieved 2016-07-19.
  12. Eggleton, P. P.; Tokovinin, A. A. (September 2008), "A catalogue of multiplicity among bright stellar systems", Monthly Notices of the Royal Astronomical Society, 389 (2): 869–879, arXiv:0806.2878Freely accessible, Bibcode:2008MNRAS.389..869E, doi:10.1111/j.1365-2966.2008.13596.x.
  13. Moro-Martín, A.; et al. (March 2015), "Does the Presence of Planets Affect the Frequency and Properties of Extrasolar Kuiper Belts? Results from the Herschel Debris and Dunes Surveys", The Astrophysical Journal, 801 (2): 28, arXiv:1501.03813Freely accessible, Bibcode:2015ApJ...801..143M, doi:10.1088/0004-637X/801/2/143, 143.
  14. Richichi, A.; Percheron, I.; Khristoforova, M. (February 2005), "CHARM2: An updated Catalog of High Angular Resolution Measurements", Astronomy and Astrophysics, 431 (2): 773–777, Bibcode:2005A&A...431..773R, doi:10.1051/0004-6361:20042039.
  15. Lang, Kenneth R. (2006), Astrophysical formulae, Astronomy and astrophysics library, 1 (3rd ed.), Birkhäuser, ISBN 3-540-29692-1. The radius (R*) is given by:
  16. "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, retrieved 2016-07-25.
This article is issued from Wikipedia - version of the 10/22/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.