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Abstract

Human dignity demands that personal information, like medical and forensic data, be hidden from the
public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit
by institutions entrusted with Data, unjustly harming citizens and eroding trust in central institutions.

Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to this tension between
the ideals of personal privacy and institutional integrity, enforcing the latter in a way that does not
compromise the former. Public trust demands transparency from ZK systems, meaning they be set up
with no reliance on any trusted party, and have no trapdoors that could be exploited by powerful parties to
bear false witness. For ZK systems to be used with Big Data, it is imperative that the public verification
process scale sublinearly in data size. Transparent ZK proofs that can be verified exponentially faster
than data size were first described in the 1990s but early constructions were impractical, and no ZK
system realized thus far in code (including that used by crypto-currencies like Zcash™) has achieved
both transparency and exponential verification speedup, simultaneously, for general computations.

Here we report the first realization of a transparent ZK system (ZK-STARK) in which verification
scales exponentially faster than database size, and moreover, this exponential speedup in verification
is observed concretely for meaningful and sequential computations, described next. Our system uses
several recent advances on interactive oracle proofs (IOP), such as a “fast” (linear time) IOP system for
error correcting codes.

Our proof-of-concept system allows the Police to prove to the public that the DNA profile of a
Presidential Candidate does not appear in the forensic DNA profile database maintained by the Police.
The proof, which is generated by the Police, relies on no external trusted party, and reveals no further
information about the contents of the database, nor about the candidate’s profile. In particular, no DNA
information is disclosed to any party outside the Police. The proof is shorter than the size of the DNA
database, and verified faster than the time needed to examine that database naı̈vely.
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1 Introduction

Scalable verification of computational integrity over confidential datasets The problem addressed here
is best illustrated by a hypothetical example: Suppose the Police (P), that is in charge of the national forensic
DNA profile database (D), claims that the DNA profile (p) of a soon-to-be-appointed and alleged-to-be-
corrupt Presidential Candidate, does not appear in D. Can cryptographic protocols convince the doubtful
public to believe this claim, without compromising D or p, without relying on any external trusted party
(e.g., the Chief Justice), and with “reasonable” computational resources?

The DNA profile match (DPM) example is a special case of a more general problem. A party (P)
executing a computation (C) on a dataset (D) may have incentive to misreport the correct output (C(D)),
raising the problem of computational integrity (CI)1 — ensuring that P indeed reports C(D) rather than an
output more favorable to P. When the dataset D is public, any party (V) interested in verifying CI can naı̈vely
re-execute C on D and compare its output to that reported by P, as a customer might inspect a restaurant
bill, or as a new Bitcoin node will verify its blockchain [86]. This naı̈ve solution does not scale because the
time spent by the verifier (TV) is as large as the time required to execute the program (TC) and V must read
the full dataset D. Commitment schemes based on cryptographic hash functions [33] are commonly used
to compute a short immutable “fingerprint” cmt for the state at time t of a large dataset Dt [33]. Typically
cmt is negligible in length2 compared to Dt, and may be easily posted on a block-chain to serve as a public
notice3. Thus, the CI solution we seek should have scalable verification, one in which verification time and
communication complexity scale roughly like log TC and |cmt| (the bit-length of cmt), rather than like TC

and |Dt|; at the very least verification time/communication should be strictly less than TC and |Dt|.
When the dataset D contains confidential data, the naı̈ve solution can no longer be implemented and the

party P in charge of D may conceal violations of computational integrity under the veil of secrecy. Prevailing
methods for enforcing CI over confidential data rely on a “trusted party”, like an auditor or accountant to
naı̈vely verify the computation on behalf of the public. This solution still offers no scaling, much like when
the data is public. Worse still, it requires the public to trust a third party, which creates a potential single
point of failure in the protocol, as this third party — to the extent it can be agreed upon — can be breached,
bribed, or coerced by malicious parties.

Zero knowledge (ZK) proof and argument systems are automated protocols that replace human auditors
as a means of guaranteeing computational integrity over confidential data for any efficient computation4,
eliminating corruptibility and reducing costs [59]. A ZK system S for a computation C is a pair of ran-
domized algorithms, S = (P,V); the prover P is the algorithm used to prove computational integrity and
the verifier V checks such proofs. The completeness and soundness of S imply that P can efficiently prove
all truisms but will fail to convince V of any falsities (with all but negligible probability). The very first
theoretical constructions of ZK systems with scalable verifiers for general computations5, discussed in the
early 1990s, were based on Probabilistically Checkable Proofs (PCP). (See Section 1.3 for recent alterna-
tive ZK constructions.) The celebrated PCP Theorem [7, 6, 3, 2] offered a surprising trade-off between the
running time spent by the prover constructing the proof (TP), and the running time consumed by the verifier

1This problem is also known as delegation of computation [58], certified computation [41] and verifiable computation [52].
2Commonly, cmt is the SHA2 hash of Dt which is 256 bits long for any dataset length.
3A recent report by the World Economic Forum mentions several use cases, among them monitoring blood diamonds and

curbing human trafficking [68].
4In the interactive oracle proof model that we consider, as in the model of multi-prover interactive proofs, ZK proof systems

exist for any language in nondeterministic exponential time (NEXP) [11, 15].
5Special cases for ZK, like proving membership/non-membership in a hidden-and-committed set — the “ZK-set” problem —

are efficiently solved by other cryptographic means [84]
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checking it (TV); this trade-off means proving time increases polynomially compared to naı̈ve computation
time (TP = T

O(1)
C ) whereas verification time decreases exponentially with respect to it (TV = logO(1) TC).

A ZK system based on the PCP Theorem (ZK-PCP) [74, 85, 49, 75, 71] has three additional advantages
that are essential for ongoing public trust in computational integrity. First, the assumptions on which the
security of these constructions is founded — the existence of collision-resistant hash functions [74] for
interactive solutions, and common access to a random function6 (the “random oracle model” [50]) for non-
interactive ones [85] — are not known to be susceptible to attacks by large-scale quantum computers; we
call such solutions post-quantum secure. The anticipated increase in scale of quantum computers [43] and
the call for post-quantum cryptographic protocols, e.g., by the USA National Institute of Standards and
Technology (NIST) [37], highlight the importance of a post-quantum secure ZK solution.

Second, ZK-PCPs are proof of knowledge (POK) systems, or, when realized as described above, argu-
ment of knowledge (ARK) systems [33, 9]. Informally, in the context of the DPM example, a ZK-ARK is
a proof that convinces the public that the Police has used “the true” dataset Dt and Presidential Candidate
DNA profile p whose commitments were previously announced (see Definition 3.3).

Third, and most important, ZK-PCPs are transparent (or “public randomness”7), which means that the
randomness8 used by the verifier is public; in particular, setting up a ZK-PCP requires no external trusted
setup phase, in contrast to newer ZK solutions, including the one used by the Zcash™ cryptocurrency (see
Section 1.3). Transparency is essential for ongoing public trust because it severely limits the ability of even
the most powerful of parties P to abuse the system, and thus transparent systems are ones which the public
may reliantly trust as long as there exists something unpredictable in the observable universe.

Summarizing, ZK-PCPs are an excellent method for ensuring public trust in CI over confidential data,
and possess six core virtues: (i) transparency, (ii) universality — apply to any efficient computation C, even
if it requires auxiliary (and possibly confidential) input like Dt above, (iii) confidentiality (ZK) — do not
compromise auxiliary inputs like Dt, (iv) post-quantum security, (v) proof/argument of knowledge and (vi)
scalable verification. Although ZK-PCPs have been known since the mid-1990’s, none have been realized
in code thus far because, in the words of a recent survey [110], “the proofs arising from the PCP theorem
(despite asymptotic improvements) were so long and complicated that it would have taken thousands of
years to generate and check them, and would have needed more storage bits than there are atoms in the
universe.” Consequently, recent realization efforts of ZK systems for general computations (surveyed in
Section 1.3) focused on alternative techniques that do not achieve all of (i)–(vi), though some are extremely
efficient in practice for concrete circuit sizes and for amortized computations.

Interactive Oracle Proofs (IOP) with scalable proofs To improve prover scalability without sacrificing
properties (i)–(vi), a new model was recently suggested [22, 94], called an interactive oracle proof (IOP)9,
a common generalization of the IP, PCP, and interactive PCP (IPCP) models [72]. As in the PCP setting, the
IOP verifier need not read prover messages in entirety but rather may query them at random locations; as
in the IP setting, prover and verifier interact over several rounds. As was the case for ZK-PCPs, a ZK-IOP
system can be converted into an interactive ARK assuming a family of collision-resistant hash functions, and
can be turned into a non-interactive argument in the random oracle model [22], which is typically realized
using a standard hash function. As a strict generalization of IP/PCP/IPCP, the IOP model offers several

6Even though the random oracle model, per se, is unattainable, it’s use is prevalent in cryptography and the theoretical justifica-
tion for it discussed, e.g., in [10] and following works.

7Transparent systems are also known as Arthur-Merlin protocols [4].
8Randomness is necessary for ZK proof systems for non-trivial computations [57, Section 3.2].
9Reingold et al. [94] use the name “Probabilistically Checkable Interactive Proofs” (PCIP).
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advantages. Most relevant to this work is the improved prover scalability of IOPs, described below; this
advantage holds both asymptotically — as input size n→∞ (cf. [15, 16]) — and for concrete input lengths
that arise in practice. Based on this efficiency, a proof-of-concept implementation of an IOP, codenamed
SCI, was recently reported10 [13]; however, SCI does not have ZK and it’s concrete argument length and
proving time are still quite large. IOPs with (perfect) ZK and scalable verifiers were recently described, first
for NP [17], then for NEXP [15]. In both works, prover running time (TP) is bounded by TC · logO(1) TC;
we refer to this as scalable proving time (also known as quasi-linear proving time).

Henceforth, we shall call a (universal) ZK system (vi’) fully scalable, or, simply scalable, if both prover
and verifier running times are scalable; this is justified because both running times are nearly-optimal,
up to poly-logarithmic factors. A ZK-IOP system satisfying properties (i)–(v) and full scalability (vi’)
will be called a Scalable Transparent IOP of Knowledge (ZK-STIK); see Section 3 for formal definitions.
Summarizing, theoretical constructions of ZK-STIK systems were recently presented, but their concrete
efficiency and applicability to “practical” computations have not been demonstrated thus far.

1.1 Main contribution

We present a new construction of a (doubly) scalable and transparent ZK system in the IOP model (a ZK-
STIK); see Theorems 3.4 and 3.5 for details. We realize this system as a ZK-STARK and apply it to a proof-
of-concept “meaningful” computation that is highly sequential in nature — the DPM problem presented
earlier. Our realization achieves (i) verification time that is strictly smaller than naı̈ve running time (TV <
TC) and (ii) communication complexity that is strictly smaller than witness size. The core innovation and
main source of improved performance in this system is the extended reliance on the IOP model, including
the Fast Reed-Solomon (RS) IOP of Proximity (IOPP) (FRI) protocol discussed in Section 2 (cf. [14]) and
a new arithmetization procedure (see Section 2.3). We stress that the exponential speedup in verification
time and witness-size described next (and displayed in Figure 1) apply to any computation that is defined
for arbitrarily large witness size, though the particular point at which this speedup materializes depends on
the complexity of the computation (as defined in Section 2.2)11.

DNA profile match computation As a proof-of-concept “meaningful” computation we construct a ZK-
STARK for the DNA profile match (DPM) problem, which we describe informally next (see Appendix E for
details). This computation addresses the following hypothetical scenario: Suppose that the Police (acting
as the prover P) is in charge of the national forensic DNA profile database (D), and at previous time t has
posted (say, on a block-chain) a hiding commitment cmt to the state Dt of the database at that point in
time. The Police now claims that the DNA profile p of the soon-to-be-appointed and alleged-to-be-corrupt
Presidential Candidate, does not appear in Dt and thus wishes to create, in a scalable manner, a proof that
will convince the public that the DPM computation was carried out correctly, and the output reported by the
Police is correct (with respect to p and Dt).

The prevailing standard for DNA profiles, used in over 50 countries, is the Combined DNA Index System
(CODIS) format; according to this standard an individual is represented by the Short Tandem Repeat (STR)
count of his/her DNA, measured for a set of 20 “core loci” [87] (the number of core loci increased from
13 to 20 starting January 2017). The commitment cmt to the state Dt of a CODIS database is assumed
to be public information (say, published at time t on a blockchain), as is a commitment cmp to the profile

10https://github.com/elibensasson/SCI-POC
11In particular, a computation with parameters similar to the last row of Figure 4 will behave similarly to the DPM computation

displayed on Figure 1.
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p of the Presidential Candidate; we assume p was extracted by an independent laboratory that handed it
(confidentially) to the Police while publishing cmp publicly. Assume that the Police declares

“The value α is the result of the match search for the profile with commitment cmp in the database
with commitment cmt”

(*)

The answer α is one of three possibilities: “no match”, “partial match”, or “full match”. The public
(open source) computation C is the one that would have been executed by a trusted third party verifying
the claim above. This computation requires three public inputs — cmt, cmp and A — and two confidential
inputs: (i) a DNA profile database D′ and individual DNA profile p′. The computation C terminates success-
fully if and only if the public inputs (cmt, cmp, A) and the confidential ones (D′, p′) satisfy three conditions:
(i) the commitment cm′ of the confidential input D′ equals the public input cmt; (ii) the commitment cm′p of
the confidential input p′ equals the public input cmp; and (iii) the output of the match search for the confi-
dential input p′ in the confidential dataset D′ leads to the publicly announced outcome α; see Appendix E.5
for details.

Let |D(n)| denote the bit-length of a dataset D(n) that contains n profiles (each profile is 40 bytes long);
let CC(n) denote the communication complexity of the ZK-STARK for D(n), i.e., the total number of bits
communicated between prover and verifier; similarly, let TC(n) denote the time needed to naı̈vely verify C
by executing it on D with n entries, and let TV(n) denote the time required by V to verify it, (both measured
on a fixed physical computer.)

Realizing time and witness-size compression Consider a computation C which requires auxiliary confi-
dential input D that varies in size, like the DPM example. Any ZK-system S = (P,V) for C induces a pair
of rate measures for time and witness-size, respectively:

ρtime(n) =
TV(n)

TC(n)
; ρsize(n) =

CC(n)

|D(n)|
(1)

The rate measures (and thresholds defined next) depend on C and the system S, so the notation ρ(S;C)
time would

be more precise, but we prefer notational simplicity and assume C and S are known.
A rate value smaller than 1 indicates compression, meaning verification in S is more efficient than naı̈ve

verification. In fully scalable ZK systems verifier complexity is poly-logarithmic in prover complexity.
Therefore eventually, for large enough n, the system achieves compression. Our main claim here is that we
exhibit, for the first time, time and witness-size compression for a ZK-STARK for a large-scale sequential
computation. Define the compression threshold to be the smallest value n0 such that for all n ≥ n0 the rate
is less than 1,

θtime = min {n0 | ∀n ≥ n0 ρtime(n) < 1} ; θsize = min {n0 | ∀n ≥ n0 ρsize(n) < 1} (2)

Figure 1 shows the rate measures for the DPM problem on a double logarithmic scale. The time com-
pression threshold is at θtime = 2.8 × 105 and the witness-size threshold is θsize = 9 × 103. The largest
database for which we could generate a proof during our tests is nmax = 220 ≈ 1.14 × 106 DNA profiles;
larger databases require more disk space and RAM than was available to us. Each profile occupies 40 bytes
so |Dnmax | ≈ 43 megabytes. The time-rate for nmax is ρtime(nmax) = 1/6 and the witness-size rate is
ρsize(nmax) = 1/100. This figure also demonstrates that compression will improve if supported by stronger
hardware than that on which our tests were executed. (see Appendix A for more measurements.)
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Figure 1: The time (left) and witness-size (right) rate functions of the DPM benchmark ZK-STARK as a function of (i) number of
entries (n) in the database (upper horizontal axis) and (ii) number of multiplication gates (lower horizontal axis). Database size,
in bytes, is 40 · n and processing a single profile corresponds to a circuit with ≈ 216 multiplication gates (bottom right entry of
Figure 4, explained in Sections 1.3.2 and 2.2). Verifier complexity is independent of prover complexity, so it was measured (on a
“standard” laptop; cf. Appendix A.0.2 for machine specifications) even for values of n that are larger than those for which a proof
was generated; the values of n for which a proof was generated are marked by full circles.

1.2 Discussion — Applications to decentralized societal functions

Cryptocurrencies, led by Bitcoin, are disrupting established financial systems by suggesting a fully decen-
tralized monetary system to replace fiat currency. Money is but one of the societal functions that could
be decentralized, and legal contracts are already being replaced by automated smart contracts [103] in the
Ethereum blockchain. We end this section by discussing the two expected impacts of ZK-STARK systems
on decentralized public ledgers.

Scalability A heated discussion is taking place in blockchains today, surrounding the proper way to scale
the transaction throughput without over-taxing the time and space of nodes participating in the network.
As first pointed out by one of the co-authors [12] and embraced recently by several crypto-currency initia-
tives [66, 34, 76], fully scalable proof systems (even without zero-knowledge) could solve the scalability
problem by exponentially decreasing verification time. In more detail, a single “prover node” can gener-
ate in quasilinear time a proof that will convince all other nodes to accept the validity of the current state
of the ledger, without requiring those nodes to naı̈vely re-execute the computation, nor to store the entire
blockchain’s state, which would be required for such a naı̈ve verification.

Privacy The confidentiality of ZK proofs is already being used to enhance coin fungibility and financial
privacy in cryptocurrencies. The Zerocash protocol [18] — recently implemented in the Zcash™ cryp-
tocurrency [89, 67] — uses a particular kind of ZK proofs called Succinct Non-interactive ARguments of
Knowledge (ZK-SNARK) based on cryptographic knowledge of exponent (KOE) assumptions [53, 21] to
maintain with integrity a decentralized registry whose entries are hiding commitments of unspent funds.
These ZK-SNARKs are non-transparent as they require a “setup phase” which uses non-public randomness
that, if compromised, could be used to compromise the system’s security (see Section 1.3). Looking for-
ward, ZK-STARKs could replace ZK-SNARKs and achieve the fungibility and confidentiality of Zcash™,
transparently. Currently, ZK-SNARKs are roughly 1000× shorter than ZK-STARK proofs so replacing ZK-
SNARKs with STARKs calls for more research to either shorten proof length, or aggregate and compress
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several ZK-STARK proofs using incrementally verifiable computation [105] (cf. [29]).

1.3 Comparison to other realized universal ZK systems

Recent years have seen a dramatic effort to realize in code zero knowledge proof systems using various
theoretical approaches that differ from that of our ZK-STARK. Many of these systems outperform our ZK-
STARK for sufficiently small-size computations, for low-depth parallel computations, and/or for batched
and amortized computations; all of these cases are extremely useful in practice. But for large scale compu-
tations, especially sequential ones, the improved full scalability of our IOP-based approach is, eventually,
noticeable.

Next, we briefly survey the different implemented approaches that are universal, i.e., apply to general
computations and languages in NP; the interested reader is referred to [110] and [13] for more information
on computational integrity solutions, including ones that are non-universal and/or without zero-knowledge.
We start by an “asymptotic” discussion in Section 1.3.1 and continue with a comparison of concrete param-
eters for published and realized systems (Section 1.3).

1.3.1 Theoretical discussion

Within the vast (and growing) literature on realizations of ZK systems, we must limit the scope of our
discussion and do so somewhat arbitrarily, by considering only systems that are ZK, Turing complete, and
which have been realized in code. We compare these for the most general class of computational integrity
statements (see Definition 3.1 for a formal definition) and consider four properties: asymptotic (i) prover
scalability (quasilinear running time), (ii) asymptotic verifier scalability (poly-logarithmic verification), (iii)
transparency, and (iv) post-quantum security. The first three terms are formally defined in Definition 3.3,
and the last one is informal, but could be replaced with the property of reliance only on collision resistant
hash functions12. Figure 2 summarizes our discussion, and we provide details next.

• Homomorphic public-key cryptography (hPKC): This approach, initiated by Ishai et al. [69] (for
the “designated verifier” case) and Groth [60] (for the “publicly verifiable” case), uses an efficient
information-theoretic model called a “linear PCP” that is then “compiled” into a cryptographic sys-
tem using hPKC. An extremely efficient instantiation, based on Quadratic Span Programs, was in-
troduced by Gennaro et. al [53] (see [64, 52, 81, 30, 62, 63] for related work and further improve-
ments). It serves, e.g., as the proof system behind Zerocash and Zcash™. The first implementation
of a QSP based system is called Pinocchio [88], with subsequent implementations including lib-
SNARK [21, 96] (discussed in the next section) which is used in the Zerocash and Zcash™ imple-
mentations; additional implementations appear in [98, 101, 100, 99, 24, 108, 46].

The theoretical differences between hPKC and ZK-STARK are that of transparency and post-quantum
security — hPKC lacks both. Verification time in hPKC is scalable (i.e., poly-logarithmic in TC) only
for computations that are repeated many times, because the hPKC “setup phase” requires time ≥ TC.

• Discrete logarithm problem (DLP): An approach initiated by Groth [61] (cf. [97]) and implemented
in [31], relies on the hardness of the DLP to construct a system that is transparent. Shor’s quantum fac-
toring algorithm solves the DLP efficiently, rendering this approach quantum-susceptible. Addition-
ally, verifier complexity in the DLP approach requires time ≥ TC hence it is non-scalable (according

12This assumption covers only the interactive setting; see discussion in Section 3.3.
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to our definition of the term), although communication complexity in the DLP approach is logarith-
mic. We refer to the initial implementation of this system as BCCGP [31], and a recent improved
version is called BulletProofs [35].

• Interactive Proofs (IP) based: IP protocols can be performed with zero knowledge [11] but only
recently have IP protocols been efficiently “scaled down” to small depth (non-sequential) computa-
tions via so-called “proofs for muggles” of Goldwasser et al. [58, 94]. This led to a line of realiza-
tions in code, early works lacked ZK [42, 41, 104, 107], but the state-of-the-art ones, like [112] and
Hyrax [109], do have it.

Like ZK-STARK, these recent IP-based proofs are transparent and have a scalable prover, but are
quantum-susceptible and their verifier is not scalable, as it scales linearly with computation time for
“standard” (i.e., sequential) computations (like other approaches, it is quite efficient for batched and
amortized computations and for small circuits).

• Secure multi-party computation (MPC): This approach, suggested by Ishai et al. [70] and imple-
mented first in the ZKBoo [55] system, and more recently, in Ligero [1], “compiles” secure MPC
protocols into ZK-PCP systems, by requiring the prover to commit to the transcript of a secure MPC
protocol, and then reveal the view of one of the parties.

Like ZK-STARK, the MPC-based proofs are transparent, post-quantum secure and have scalable
(quasilinear) proving time. However, MPC based systems have a non-scalable verifier, one that runs in
time≥ TC and communication complexity is non-scalable, it is

√
TC in the state of the art system [1];

for concrete circuits and amortized computations it is, nevertheless, extremely efficient.

• Incrementally Verifiable Computation (IVC): This approach, suggested by Valiant [105] (cf. [39,
29]) reduces prover space consumption by relying on knowledge extraction assumptions; this ap-
proach can be applied on top of other proof systems with succinct (sub-linear) verifiers, including
ZK-STARK, but thus far has been realized only for a single hPKC system [23].

Compared with ZK-STARK, systems built this way inherit most properties from the underlying proof
system. In particular, the hPKC-based IVC is non-transparent and quantum-susceptible; however
the verifier is scalable even for a computation executed only once, because the setup phase runs in
poly-logarithmic time.

prover scalability
(quasilinear time)

verifier scalability
(polylogarithmic time)

Transparency
(public randomness)

Post-quantum
security

hPKC Yes Only repeated computation No No
DLP Yes No Yes No
IP Yes No Yes No

MPC Yes No Yes Yes
IVC+hPKC Yes Yes No No
ZK-STARK Yes Yes Yes Yes

Figure 2: Theoretical comparison of universal (NP complete) realized ZK systems.
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1.3.2 Concrete performance

Different ZK proof systems are based on different cryptographic assumptions and are designed for different
computational problems. Their realizations are written in different programming languages and tested on
varied hardware. Therefore, exact “apples to apples” comparisons are difficult, if not impossible, to perform.
Having said that, in this section we attempt to qualitatively compare the realized proof systems reported in
the previous section in terms of verifier, prover, and communication complexity for computational problems
that are similar in nature to the DPM.

Arithmetic circuit complexity as standard measuring yard All realized proof systems surveyed here
(including our ZK-STARK) use arithmetization to reduce computational integrity (CI) statements to state-
ments about systems of low-degree polynomials over finite fields (see Section 2). All other surveyed sys-
tems use prime fields Fp, though some (like MPC- and IP-based) could operate also over binary fields, like
ZK-STARK; we stress that ZK-STARK could also operate over prime fields13 but we have not realized this
in code. Most systems (ZK-STARK not included) reduce CI statements to arithmetic circuits, i.e., ones that
correspond to constraints that are quadratic polynomials; ZK-STARK reduces to systems of higher-degree
polynomials, e.g., for our DPM benchmark this degree is 8.

Arithmetic circuit complexity is a a reasonable metric to use in order to compare various proof-systems.
The main parameters that influence proof-system complexity (and are mentioned in prior works) are circuit
depth, circuit width (number of gates in each “level” of the circuit), nondeterministic witness size, and
multiplication complexity, i.e., the number of multiplication gates. (Addition complexity is also relevant,
but most proof systems are less affected by it.)

Our DPM computation corresponds to an arithmetic circuit with the following parameters, when applied
to a database with n entries (see Figure 4):

• circuit depth is depthn = 62 · n;

• circuit width is w = 81;

• witness complexity is witn = 40 · n bytes;

• multiplication complexity is multn = 1467 · 62 · n = 90954 · n ≈ 216.4 · n.

As discussed at length in Appendix A, we measured the full ZK-STARK system (prover+verifier) with 60
bits of security for n = 2k, k = 1, . . . , 20, i.e., for arithmetic circuits with depth up to depthn ≈ 225.9, and
with up to ≈ 236.4 multiplication gates over F264 ; the (nonadaptive) verifier alone was measured even for
larger inputs, up to n = 236 (see Appendix A).

To attempt an “apples to apples” comparison with other systems, we ran several of them on a single
machine — one that is different than that used to measure the DPM code14 — using the same benchmark
computation based on the “exhaustive subset-sum” computation measured in prior work [13]; the results are
summarized by Figure 3. The systems measured thus far this way are

• libSNARK (commit dc78fd, September 7, 2017) with 80-bit security

• SCI (same measurements used in [13]) with 80-bit security
13the FRI system requires p to contain a sufficiently large multiplicative subgroup of order 2t+O(1); such prime fields abound, as

implied by Linnik’s Theorem [80].
14The machine used to measure the DPM code was kindly offered to us by Intel™ for a limited time, whereas for the “apples-to-

apple” comparison we needed to provide other teams with access to a machine, for long periods of time.
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• BCCGP with logarithmic communication complexity and 128-bit security, single threaded (same
system used in [31])

• Ligero with 60 bits of security (same system as reported in [1]);

• our ZK-STARK, with 60-bit security ZK-STARK; we estimate prover prover time for 80 bits to be at
most 5% longer; cf. Appendix B.5.1.

We now briefly discuss the performance of these (and other prior reported works), focusing on the
following complexity parameters: prover time, verifier time, and communication complexity.

Prover complexity Nearly all systems surveyed earlier have prover complexity that scales either linearly
or nearly-linearly in computation size. As shown in Figure 3, our ZK-STARK prover is at least 10× faster
than the other measured systems across the full range of compared computations (all systems were tested
up to maximal proving time of 12 hours). We hope to perform similar “apples-to-apples” comparisons (i.e.,
same machine, circuit depth, width and size) with other systems like Hyrax and BulletProofs in future
work.

215 219 223 227 231 235

100 ms

1 sec

1 min

10 min

1 hr

10 hr

Prover time

ZK-STARK
libSNARK
SCI
BCCGP
Ligero

215 219 223 227 231 235

10 ms

100 ms

1 sec

1 min

1 hour

9.5 h
Verifier time

215 219 223 227 231 235

100B

1KB
5KB

100KB

1MB
5MB

1GB
5GB

100GB

Communication Complexity

Figure 3: An “apples-to-apples” comparison of different realized proof systems as function of computation size, measured by
number of multiplication gates. All systems were tested on the same server (specs below) and executed a computation of size
and structure corresponding to the “exhaustive subset-sum” program from [13, Section 3]. The compared systems are SCI (pur-
ple x-marks), which lacks ZK, libSNARK (blue triangles), BCCGP (cyan +-marks), executed in single-thread mode, Ligero (red
squares) and ZK-STARK (green circles). From left to right, we measure prover time, verifier time and communication complexity.
For libSNARK, the hollow marks in the middle and right plots measure only post-processing verification time and CC, respectively;
the full marks measure total verification time and CC, and this includes the (non-transparent) key-generation phase. Server speci-
fication: 32 AMD cores at clock speed of 3.2GHz, with 512GB of DDR3 RAM. (Each pair of cores shares memory; this roughly
corresponds to a machine with 16 cores and hyper-threading.)

Verifier complexity Different proof systems excel on different circuit topologies. For example, Ligero
achieves best performance for circuits of size s that are iterated s times (i.e., when depth ≈ w ≈

√
mult),

and Hyrax works best on small depth, massively parallel, circuits (depth = O(1) and w,mult � depth).
The concrete performance of IOP-based systems on such circuit topologies is an interesting question, left
for future work.

For “deep” and “narrow” circuits, like the ones arising from the DPM, verifier arithmetic complexity
of prior works scales at least like

√
mult (and, often, like mult), whereas our ZK-STARK scales like w +

log mult (see Theorems 3.4 and 3.5). Consequently, for medium- and large-scale sequential computations
our ZK-STARK verifier time is better than other solutions, as shown by the middle plot of Figure 3. We
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expect the comparison with other works, like Hyrax and BulletProofs, to behave similarly; in particular, the
Hyrax prover reaches≈ 10 seconds for a circuit with≈ 228 gates (but measured on a different machine than
ours); BCCGP and BulletProofs require even greater running time [109, Figure 4.(i)]. For comparison, the
ZK-STARK verifier for the DPM computation requires less than 50 ms (on a different machine), even for
huge circuits15, with n = 236 entries (profiles), witn ≈ 2.5-terabyte size witnesses and arithmetic circuits
with multn = 252 multiplication gates and depth ≈ 240 (cf. Figure 7).

The hPKC systems like Pinocchio and libSNARK, and IVC+hPKC systems like that of [23], are differ-
ent in this respect. They have a pre-processing phase that is performed only once per circuit. For Pinocchio
and libSNARK pre-processing time grows linearly with circuit size. E.g., the libSNARK system requires
≈ 16 seconds for a computation with 220 gates. For the IVC+hPKC system, pre-processing time is constant
and does not depend on circuit size; however, this constant is quite large compared to our verifier time, it is
≈ 10 seconds for a computation similar to our DPM.

Communication complexity (CC) The use of a pre-processing phase in the hPKC and IVC+hPKC sys-
tems leads to extremely small post-processing CC; the BCCGP system also enjoys extremely short CC and,
because its pre-processing is transparent, can be effectively replaced with a short seed to a pseudo-random
generator. Concretely, for all computations measured in practice, post-processing CC of Pinocchio, lib-
SNARK and the IVC+hPKC system are less than 300 bytes, and that of BCCGP is less than 7KB [31]
(see also Figure 3). However, pre-processing key length scales linearly with circuit size for hPKC; the
IVC+hPKC system is different in this respect, it has succinct pre-processing length even for large compu-
tation size, but once again, this length is concretely large — more than 40 MB for a computation like our
DPM.

For Ligero, communication complexity scales like 70
√

multn field elements [1, Section 5.3], and for
Hyrax it scales like wit1/k+10·depth·log w field elements for arbitrary integer k [109, Section 1]; increasing
k decreases CC but also increases verification time (which is at least wit/(wit1/k)). Using the estimate for
Hyrax, a quick calculation shows that for a circuit arising from our DPM computation with, say n = 213

profiles, the CC of Hyrax would reach several megabytes, compared with ZK-STARK CC that is less than
1 megabyte even for n = 236 profiles.

Summary Among all ZK systems tested in the “apples-to-apples” manner described above, our ZK-
STARK has the fastest prover for all circuit-sizes we were able to measure; in particular, it is ≈ 10× faster
than the second fastest measured system — libSNARK. Other systems perform better (shorter communica-
tion, faster verification) on small circuits (ZKBoo, Ligero), small-depth circuits (Hyrax), and on compu-
tations repeated many times with the same fixed circuit (BulletProofs, Pinocchio, libSNARK). However,
for general large scale computations our ZK-STARK has verification time and communication complexity
outperform all other transparent systems published thus far for this range of parameters. In other words,
our particular ZK-STARK realization shows that the asymptotic benefits of full scalability and transparency
are manifested already for concrete computations that are practically relevant, like the DPM, and suggest
that our type of system is potentially useful for constructing scalability solutions, e.g., for decentralized
crypto-currencies (as discussed in Section 1.2).

15We stress that current hardware does not support generating proofs for such large instances, as discussed later.
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2 Methods

This section highlights the main innovative components that underlie the (double) scalability and concrete
efficiency of our ZK-STARK; the exposition is short and informal. Later, in Section 3 we shall formally
define the theoretical model which our ZK-STARK uses, and state the main theorems for this model (Theo-
rems 3.4 and 3.5); then, in Appendix B we formally present the steps of the reduction (proved in subsequent
sections).

Overview Many ZK systems (including ours) use arithmetization, a technique first16 used to prove circuit
lower bounds [93, 102], then adopted to interactive proof systems [5, 82]. Arithmetization is the reduction
of computational problems to algebraic problems, that involve “low degree” polynomials over a finite field
F; in this context, “low degree” means degree is significantly smaller than field size.

The start point for arithmetization in all proof systems is a computational integrity statement which the
prover wishes to prove, like

“α is the result of executing C for T steps on (public) input x” (**)

Notice the DPM statement (*) is a special case of (**). For our ZK-STARK, and for related prior sys-
tems [27, 25, 13], the end point of arithmetization is a pair of Reed-Solomon (RS) proximity testing (RPT)
problems17, and the scalability of our ZK-STARK relies on a new solution to the RPT problem, discussed
first; later we explain the arithmetization process in more detail.

2.1 Fast Reed-Solomon Interactive Oracle Proof of Proximity (FRI3rd)

For S ⊂ F and rate parameter ρ ∈ (0, 1), the Reed-Solomon code RS[F, S, ρ] is the family of functions
f : S → F that are evaluations of polynomials of degree < ρ|S|. The RPT problem assumes a verifier is
given oracle access to f , and to auxiliary information like a probabilistically checkable proof of proximity
(PCPP) [25, 48] or an interactive oracle proof of proximity (IOPP) [22, 94, 15]; the verifier’s task is to
distinguish with high probability and with a small number of queries to f and the auxiliary PCPP/IOPP ora-
cle(s), between the case that f ∈ RS[F, S, ρ] and the case that f is 0.1-far from (all members of) RS[F, S, ρ]
in relative Hamming distance. Finding solutions to the RPT problem (a special case of the “low-degree
testing” problem) is a major bottleneck for transparent systems.

Our ZK-STARK uses a new protocol to solve RPT, called the Fast RS IOPP (FRI). FRI is the first
RPT solution to achieve prover arithmetic complexity that is strictly linear — 6 · |S| arithmetic operations
in F — and verifier arithmetic complexity that is strictly logarithmic: 21 · log |S| arithmetic operations;
additionally, the proof can be constructed in log |S| cycles on a parallel machine, and is structured as to lead
to short arguments (see Section 2.5). FRI improves significantly, both asymptotically and concretely, on
the previous RPT solutions which required quasilinear prover arithmetic complexity (θ(|S| · logO(1) |S|)).
See [14] for a detailed description.

2.2 Arithmetization I — Algebraic Intermediate Representation (AIR)

Having discussed its end point, we return to describe the innovative components of our ZK-STARK within
the arithmetization process itself. The arithmetization is comprised of several phases that are similar to other

16Earlier reductions, such as the one used in Gödel’s Incompleteness Theorem, involved infinite algebraic domains, in particular
the natural numbers [56].

17The other solutions described in Section 1.3 have different end points.
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program and circuit compilation processes, so we borrow terminology used there and adapt it to our process.
The first phase of arithmetization is that of constructing an algebraic intermediate representation (AIR)

of the program C. Informally, the AIR is a set

P =
{
P1( ~X, ~Y ), . . . , Ps( ~X, ~Y )

}
of low degree polynomials with coefficients in F over a pair of variable sets ~X = (X1, . . . , Xw) and ~Y =
(Y1, . . . , Yw) that represent respectively the current and next state of the computation18 (see Appendix C and
Definition B.3 for more details). The AIR defines the transition relation of the computation C in the sense
that a pair (~x, ~y) ∈ Fw × Fw corresponds to a single valid transition (or “cycle”) of C if and only if

P1(~x, ~y) = . . . = Ps(~x, ~y) = 0,

i.e., if and only if (~x, ~y) is a common solution of the AIR system P . The following parameters of P
determine prover and verifier complexity, so minimizing them is a major goal of this phase. The degree of
the AIR is deg(P) = maxs

i=1 deg(Pi); the (state) width is the number of variables (w) needed to represent
a state; the (AIR) size is the number of constraints (s), and the cycle count is the number of machine cycles
needed to execute19 C; when the program processes a large number (n) of data elements, as is the case for
the DPM benchmark, we are interested in the number of cycles per element, denoted c; the total cycle count
for n elements is c·n. If the computation is “expanded” to a circuit (as commonly done in the other solutions
described in Section 1.3), the cycle count is a lower bound on circuit depth; for the sake of comparison with
those other systems, we compute in the rightmost column of Figure 4 the total number of multiplication
gates for this expanded circuit, as this measure along with circuit depth, are the complexity measures that
dictate prover and verifier complexity.

A major contributor to prover complexity in our benchmarks is the cost of proving computational in-
tegrity of repeated invocations of a cryptographic hash function; other computations are negligible compared
to this cost. Thus, choice of the particular hash function (H) is of great importance, as is its definition in
terms of P . Our ZK-STARK uses the binary (characteristic 2) field F264 because (i) it has efficient arith-
metic operations (e.g., addition is equivalent to exclusive-or) and (ii) its algebraic structure is needed for the
FRI3rd protocol. Therefore, the cryptographic hash function we seek is one that is “binary field friendly”,
meaning, informally, its AIR has small complexity parameters when defined over binary fields. Figure 4
summarizes the main AIR complexity parameters for the DPM benchmark described in Section 1 and for
three hash functions: the Secure Hash Algorithm 2 (SHA2) family [92] and the Davies–Meyer [111] hash
based on the Rijndael block cipher [44] with 128 bits (AES128+DM) and with 160 bits (Rij160+DM). See
Appendices E and F for details.

2.3 Arithmetization II — Algebraic Linking Interactive Oracle Proof (ALI)

The main bottleneck for prover time and space complexity is the cost of performing polynomial interpola-
tion and its inverse operation — multi-point polynomial evaluation; we discuss both in Section 2.4. The
complexity measure that dominates this bottleneck is the maximal degree of a polynomial which the prover
must interpolate and/or evaluate; for a computation on a dataset of size n denote this degree by dmax(n).
Prior state-of-the-art [27, 20, 38, 13] gave

dmax
old (n) = n · c · w · d + n · c · s. (3)

18This informal description omits, for simplicity, the boundary conditions, like public inputs and outputs of the computation.
19In general, this number may depend arbitrarily on the particular input, however, in all our benchmarks it depends linearly on

the size (n) of the input dataset.

15



State size
w

Cycles
c

Degree
d

System size
s

#×
gates

#+
gates

total #×
gates

SHA2 56 3762 11 1065 720 3194 2708640≈ 221.3

AES128+DM 62 48 8 327 486 1033 23328≈ 214.5

Rij160+DM 68 58 8 318 891 1390 51678≈ 215.7

DPM 81 62 8 626 1467 1520 90954≈ 216.4

Figure 4: Main complexity parameters of basic cryptographic primitives and the benchmark DNA profile match search program.
The first four measures are explained in Section 2.2. The 5th and 6th columns measure total number of multiplication and addition
gates in the AIR; the last column measures total number of multiplication gates (product of second and 5th columns) for the sake
of comparison with other ZK systems that use this measure (cf. Section 1.3.2).

which leads to concretely large values (see first column of Figure 5). Our ZK-STARK reduces dmax to

dmax
ZK−STARK(n) = n · c · d (4)

which results in a multiplicative savings factor of 6.5 × 104–1.8 × 105 over prior works (see the last two
columns of Figure 5). The improved efficiency of our ZK-STARK is due to two reasons, explained next.
The first one completely removes the second summand of (3) and the second one removes w from its first
summand.

Algebraic linking IOP (ALI) The second summand of (3) arises because our prover needs to apply a
“local map” induced by the AIR system P (see [17] for a discussion of “local maps”). Prior state-of-the-art
systems, like [13], used a local map that checks each constraint of the AIR separately, leading to this second
summand. Instead, our ZK-STARK uses a single round of interaction to reduce all s constraints to a single
constraint that is a random linear combination of P1, . . . , Ps. This round of interaction completely removes
the second summand of (3).

Register-based encoding The naı̈ve computation performed by the prover can be recorded by an execution
trace, a two-dimensional array with c · n rows and w columns, in which each row represents the state of
the computation at a single point in time19 and each column corresponds to an algebraic register tracked
over all c · n cycles. Prior systems, like [13], encoded the full execution trace by a single Reed-Solomon
codeword, leading to degree n · c · w; this degree is then multiplied by d to account for application of the
afore-mentioned “local map” to the codeword, resulting in the first summand of (3). Our ZK-STARK uses a
separate Reed-Solomon codeword for each register20, leading to w many codewords, each of lower degree
n · c. At first glance this tradeoff may seem wasteful, because we now have to solve an RPT problem for
each of these w codewords. However, the interaction and use of randomness allowed by the IOP model once
again come to our aid: it suffices to solve a single RPT problem, applied to a random linear combination
of all w codewords. The use of a single codeword per register also helps with reducing communication
complexity, as explained in Section 2.5 below.

Figure 5 compares the dmax value of our ZK-STARK to that of the prior state of the art [27, 20, 38,
13] and shows a multiplicative reduction factor of 6.5 × 104–1.8 × 105 for the computations discussed in
Section 2.2 and Figure 4.

20For simplicity, the current description discusses the case of space bounded computations; the case of computations with large
space also uses multiple codewords but the reduction is more complicated, see Appendix C.3.
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dmax
old (1) dmax

ZK−STARK(1) dmax
old /dmax

ZK−STARK

SHA2 6323922 41382 18491
AES128+DM 39504 384 6584
Rij160+DM 49996 464 6896

DPM 78988 496 10192

Figure 5: The maximal degree (dmax) as given by formulas (3) and (4), respectively, for the computations discussed in Section 2.2.
The last column gives the multiplicative improvement factor of dmax

ZK−STARK over the prior state of the art.

2.4 Low degree extension and composition degree

Decreasing dmax affords our ZK-STARK greater scalability. But, eventually, as the input size n grows, so
does dmax. The main bottleneck for prover time and space is the computation of the low degree extension
(LDE) of the execution trace, defined next.

Definition 2.1 (Low degree extension (LDE)). Given finite subsets S, S′ of a field F satisfying |S′| > |S|
and a function f : S → F, the low degree extension (LDE) of f to S′ is the function f ′ : S′ → F that has
the same interpolating polynomial as that of f .

The LDE is typically computed by polynomial interpolation, followed by a polynomial multi-point
evaluation step. State of the art algorithms for interpolating and evaluating polynomials over binary fields are
known as additive FFT algorithms because they resemble the fast Fourier transform (FFT) [40]. To improve
prover scalability, our ZK-STARK uses the recent and novel additive FFT of Lin et al. [79], inspection
of this algorithm shows it leads to arithmetic complexity of 3 · |S′| log |S′| for the sets S′ that our system
requires (see Theorem B.2). Prior additive FFTs [36, 106, 51] required θ(N logN log logN) operations);
moreover, the memory-access pattern of this encoding algorithm leads to favorable running times compared
with prior implementations [13].

Using this additive FFT, which has strictly quasi-linear arithmetic complexity21, we also obtain the first
ZK-STIK in which prover complexity is strictly quasi-linear, and verifier complexity is strictly logarithmic,
in the size of the execution trace c · n · w; see Lemma B.6.

2.5 Minimizing Authentication Path Complexity (APC) and Communication Complexity
(CC)

The largest contributor to communication complexity, and to verifier time and space complexity in ZK-
STARK (and prior related works [27, 20, 38, 13]) is the cost of realizing the IOP model via Merkle trees.
We now discuss the way our ZK-STARK reduces this cost.

The commit–reveal scheme of Kilian [74] (which uses the “cut-and-choose” method of Brassard et
al. [33]) has the prover commit to each oracle by sending the root of a Merkle tree whose leaves are la-
beled by oracle entries. Recall an IOP involves several oracles, hence also several Merkle trees and several
roots/commitments. After the prover has committed to all oracles, the verifier queries these oracles at ran-
domly chosen positions. When the prover reveals the oracle answers to these queries, each answer must be
appended with an authentication path proving the query answers are consistent with previously committed
Merkle tree roots. Let λ denote the number of output bits of the cryptographic hash function used to con-
struct a Merkle tree in our system; let APtotal denote the total number of authentication path nodes in all

21A function g(n) is called strictly quasi-linear if g(n) = O(n logn), and called strictly logarithmic if g(n) = O(logn).
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subtrees of Merkle trees whose leaves are query answers, and let qtotal denote the total number of queries,
made to all proof oracles. The total communication complexity (CC) of the proof system is

CC = qtotal · log |F|+ APtotal · λ (5)

In addition to reducing the first summand above by improved soundness analysis, our ZK-STARK also
reduces the second summand in two separate ways:

1. The ZK-STARK verifier queries rows of the (LDE of the) execution trace, each row comprised of
w field elements that represent the state at some point in the computation (or its LDE). To reduce
communication complexity, the ZK-STARK prover places each such row in a single sub-tree of the
Merkle tree, and therefore only one authentication path is required per row (as opposed to w many
paths in prior solutions).

2. The QUERY phase of the FRI protocol queries affine cosets of a fixed subspace. Accordingly, the
ZK-STARK prover places each such coset in a single sub-tree of the Merkle tree, thereby reducing
the number of authentication paths to one-per-coset (as opposed to one per field element).

Finally, to improve running time and further reduce communication complexity, we use the Davies–
Meyer hash composed with AES as the hash function for our ZK-STARK commit-reveal scheme (recall
AES is part of the instruction set of many modern processors).

2.6 Organization of the remaining sections

The following sections give a full and formal description of our construction. Section 3 formally defines
the notion of a ZK-STIK and its realization as a ZK-STARK, and presents the main asymptotic results
(Section 3.2); along the way we recall the formal definitions of the IOP model. Appendix B describes the
main components used in our construction, and uses these to prove our main results (Appendix B.7). The
compenets are then described in more detail in the remaining sections.
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3 On STIKs and STARKs — formal definitions and prior constructions

In this section we state the main theorems that our ZK-STARK realizes (Section 3.2). Along the way we
explain what constitutes a ZK-STARK (Section 3.3) and point to earlier relevant works that are variants of
it (Section 3.4). We assume familiarity with standard definitions of zero knowledge (ZK) interactive proof
(IP) and argument systems [59, 33], probabilistically checkable proofs (PCP) [2] and PCPs of proximity
(PCPP) [26, 48], as well as interactive oracle proofs (IOP) [22, 94] and interactive oracle proofs of proximity
(IOPP) [16].

A nondeterministic machine M that decides a language L ∈ NTIME(T (n)) in time T (n) (n denotes
instance size) induces a binary relation RM consisting of all pairs (x,w) where x ∈ L and w is a sequence
of nondeterministic choices of M(x) that lead to an accepting state. In this case we say R = RM is induced
by L and implicitly assume M is fixed and known. The language that we shall be most interested in, is the
NEXP-complete computational integrity language22.

Definition 3.1 (Computational Integrity). The binary relation RCI is the set of pairs (x,w) where

• x = (M,x, y, T, S) with M a nondeterministic Turing Machine, x and y denote input and output,
and T ≥ S are integers in binary notation, indicating time and space bounds, respectively

• w is a description of the nondeterministic choices of M on input x that cause it to reach output y
within ≤ T steps, using a memory tape of size at most S (not including the read-only input tape on
which x is written).

The computational integrity (CI) language LCI is the projection of the binary relation RCI onto its first

coordinate; alternatively, LCI
4
= {x = (M,x, y, T, S) | ∃w (x,w) ∈ RCI}.

The space bound S in the definition above is unneeded, because S ≤ T . However, IOP systems for
space bounded computations (S = o(T )) are simpler and, often, concretely more efficient (this holds for
our DPM computation). Thus, we treat space-bounded computations separately and dedicate and theorem to
it (Theorem 3.4) before treating the more general (and complicated) case of general computational integrity
(Theorem 3.5).

3.1 Scalable Transparent IOP of Knowledge (STIK)

A STARK, defined later, is a realization of a scalable and transparent IOP of knowledge (STIK), discussed
next. We start by recalling the IOP model as defined in [22].

Definition 3.2 (Interactive Oracle Proof (IOP)). Let R be a binary relation induced by a nondeterministic
language L and let ε ∈ [0, 1] denote soundness error. An Interactive Oracle Proof (IOP) system S for R with
soundness ε is a pair of interactive randomized algorithms S = (P,V) that satisfy the properties below; P
is the prover and V is the verifier.

• operation: The input of the verifier is x, and the input of the prover is (x,w) for some string w. The
number of interactive rounds, denoted r(x), is called the round complexity of the system. During a
single round the prover sends a message (which may depend on w and prior messages) to which the
verifier is given oracle access, and the verifier responds with a message to the prover. We denote by
〈P(x,w)↔ V(x)〉 the output of V after interacting with P; this output is either accept or reject.

22This language is called the “Computationally Sound” language in [85] and the “universal language” in [8]; we choose the name
used in [13].
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• completeness If (x,w) ∈ R then Pr [〈P(x,w)↔ V(x)〉 = accept] = 1

• soundness If x 6∈ L then for any P∗, Pr [〈P∗ ↔ V(x)〉 = accept] ≤ ε

The proof length, denoted `(x), is the sum of lengths of all messages sent by the prover. The query complexity
of the protocol, denoted q(x), is the number of entries read by V from the various prover messages. Given
witnessw such that (x,w) ∈ R, prover complexity, denoted tp(x,w), is the complexity required to generate
all prover messages, and verifier complexity, similarly defined, is denoted tv(x).

Next, we formally define a ZK-STIK. Most of the work described in later sections is related to con-
structing a new, and more efficient, ZK-STIK; similarly, Sections 2.1–2.4 describe a ZK-STIK and only Sec-
tion 2.5 discusses a ZK-STARK. A (ZK-)STIK can be proven to be unconditionally sound, even against com-
putationally unbounded provers; ZK-STARK systems have only computational soundness, against bounded
provers, thus require additional cryptographic assumptions, discussed later.

Definition 3.3 (Scalable Transparent IOP of Knowledge (STIK)). Let R be a binary relation induced by
a nondeterministic language L ∈ NTIME(T (n)) for T (n) ≥ n and let S = (P,V) be an IOP for L with
soundness error ε(n) < 1. We say S is

• transparent if all verifier messages and queries are public random coins.

• (fully, or doubly) scalable if for every instance x of length n, both of the following hold:

1. scalable verifier: tv(n) = poly(n, log T (n), log 1/ε(n))

2. scalable prover: tp(n) = T (n) · poly(n, log T (n), log 1/ε(n))

• proof of knowledge if there exists a knowledge error function ε′(n) ∈ [0, 1] and a randomized extrac-
tor E that, given oracle access to any prover P∗ that causes the verifier to accept x with probability
p(n) > ε′(n), outputs in expected time poly

(
T (n)

p(n)−ε′(n)

)
a witness w such that (x,w) ∈ R.

• privacy preservation if there exists a randomized simulator Sim that samples (perfectly) the distri-
bution on transcripts of interactions between V and P, and runs in time poly(T (n)).

A (fully) scalable and transparent IOP of knowledge will be denoted by STIK. For T (n) = poly(n), a
privacy-preserving STIK has perfect23 zero knowledge (ZK-STIK) but for T (n) = nω(1) it implies only the
weaker notion of a witness indistinguishable proof system (wi-STIK).

A few remarks regarding the definition above:

• transparency: Interactive proofs in which the verifier sends only public random coins are known as
Arthur Merlin type protocols. The term transparent proof was introduced in [6] and is synonymous to
PCP. We choose this term because it adequately reflects the beneficial effect of public randomness on
the transparency of the proof system and. Our terminology does not contradict the earlier definition of
the term because transparent proofs (and PCPs) are also transparent according to the definition above.

• scalability: Scalable provers are called “quasi-linear” in a number of prior works and scalable verifiers
are often called “succinct”. We identify both terms into a single one that reflects the beneficial effect
of quasi-linear and succinct proof systems.

23We omit the discussion of statistical zero knowledge because all known ZK-STIK systems have perfect zero knowledge.
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3.2 Main Theorems

We now state the two main theorems regarding IOP systems, that our ZK-STARK system realizes; the
proof of both theorems appears in Appendix B.7. Since our IOP constructions use finite fields, prover and
verifier complexity are most naturally stated using arithmetic complexity over the ambient field, the size of
which is derived from the size of the instance x (see Remark B.1); we use tpF and tpF to denote arithmetic
complexity, assuming the field F is understood from context.

Our first theorem is quite efficient when applied to space bounded computations, like our DPM, and
indeed our implementation realizes the IOP described in the theorem (cf. Appendix B.8). Although we
use asymptotic notation below, the algebraic version of this theorem (Lemma B.6), involves only explicit
constants, which may be useful in the future for estimating explicit proof parameters and for asymptotic
comparisons with other works.

Recall that NTimeSpace(T (n), S(n)) is the class of nondeterministic languages that are decidable in
simultaneous time T (n) and space S(n).

Theorem 3.4 (ZK-STIK for space bounded computations). Let L be a language in NTimeSpace(T (n), S(n)), T (n) ≥
n and let R be induced by L. Then R has a transparent witness indistinguishable IOP of knowledge with the
following parameters, stated for soundness error function err(n) = 2−λ(n)

• perfect completeness and soundness error at most err(n) for instances of size n

• knowledge error bound err′(n) = O(err(n))

• round complexity r(n) = log T (n)
2 +O(1)

• query complexity q(n) = 36(λ+ 2) · (log T (n) +S(n) +O(1)), each query is an element of a binary
field F, |F| = 2n for n = λ+ log T (n) +O(1)

• verifier arithmetic complexity tvF(n) = 2n2 +O(λ · (S(n) + log T (n))

• prover arithmetic complexity tpF(n) = O(S(n) · T (n) · log T (n))

• proof length O(T (n) · S(n)), measured in field elements.

In particular, for S(n) = poly log T (n), this IOP is fully scalable, i.e., the system is a wi-STIK; if, addition-
ally, T (n) = poly(n), then the system has perfect ZK, i.e., it is a ZK-STIK.

For computations with super-poly-logarithmic space the theorem above is not scalable, neither for prover
nor for verifier. The following theorem is fully scalable for any nondeterministic language, i.e., it can be
said to be a universal wi-STIK.

Theorem 3.5 (wi-STIK for NEXP). Let L ∈ NTIME(T (n)), T (n) ≥ n and R be induced by L. Then R has
a witness-indistinguishable, fully scalable, and transparent IOP of knowledge (wi-STIK) with the following
parameters, stated for soundness error function err(n) = 2λ(n)

• perfect completeness and soundness error err(n) ≤ 2−λ(n) for instances of size n

• knowledge extraction bound err′(n) = O(err(n))

• round complexity r(n) = log T (n)
2 +O(1)
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• query complexity O(λ(n) · log T (n)), each query is an element of a binary field F, |F| = 2n for
n = λ(n) + log T (n) + log log T (n) +O(1).

• verifier arithmetic complexity tvF(n) = O(λ(n) · log T (n)),

• prover arithmetic complexity tpF(n) = O(T (n) log2 T (n)),

• proof length O(T (n) log T (n)), measured in field elements.

For T (n) = poly(n) the system has perfect ZK, i.e., it is a ZK-STIK.

3.3 Scalable Transparent ARgument of Knowledge (STARK) as a realization of STIK

Definition 3.3 refers to the IOP model, in which results can be proved with no cryptographic assumptions.
Indeed, most of our contributions, described in following sections (like the FRI protocol), are stated and
studied in this “clean” IOP model; and a majority of our engineering work was dedicated to implementing
IOP-based algorithms of a STIK system. However, we are not aware of any unconditionally secure IOP
realization that is scalable, and theoretical works show that such constructions are unlikely to emerge [54].
A number of fundamental transformations have been suggested in the past to realize PCP systems using
various cryptographic assumptions, and these transformations were adapted to the IOP model [22]. In
all such realizations the prover must be computationally bounded, and such systems are commonly called
argument systems, and, consequently, the realization of a STIK results in a Scalable Transparent ARgument
of Knowledge (STARK).

The two main transformations of proof systems into realizable argument systems are:

• Interactive STARK (iSTARK) As shown by Kilian [74] for the PCP model, a family of collision-
resistant hash functions can be used to convert a STIK into an interactive argument of knowledge
system; if the STIK has perfect ZK, then the argument system has computational ZK. Any realization
of a STIK using this technique will be called an interactive STARK (iSTARK); when one wants to
emphasize that the STIK is zero knowledge, the term ZK-iSTARK will be used.

• Non-interactive STARK (nSTARK) As shown by Micali [85] and Valiant [105] for the PCP model,
and by Ben-Sasson et al. [22] for the IOP model, any STIK can be compiled into a non-interactive
argument of knowledge in the random oracle model (called a non-interactive random-oracle proof
(NIROP) there); if the STIK had perfect zero knowledge then the resulting construction has com-
putational zero knowledge. Any realization of a STIK using this technique will be called an non-
interactive STARK (nSTARK); when one wants to emphasize that the STIK is zero knowledge, the
term ZK-nSTARK will be used.

While non-interactive STARKs have the advantage of being comprised of a single message from the
prover, they also rely on stronger assumptions. In certain settings the public may view certain blockchains
(like Bitcoin’s) as a realization of both (i) an immutable public time-stamping service and (ii) a public
beacon of randomness. Under this view, the blockchain can be used to emulate the verifier on an iS-
TARK system, resulting in smaller communication complexity under better (more standard) cryptographic
assumptions. Thus, we leave the choice of which particular realization mode to use for a (ZK)-STIK—
(ZK)-iSTARK vs. (ZK)-nSTARK— to be made by system designers based on particular use cases, and
refer to both realization modes of a STIK as a STARK; to emphasize the ZK aspect of the STIK we may
refer to the realization as a ZK-STARK.
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3.4 Prior STIK and STARK constructions

The acronyms STIK and (ZK-)STARK may be new to this work, but IOP systems obtaining the properties
that define them have been described in the past, as discussed next.

STIK PCP systems are, by definition, transparent (1-round) IOP systems. The first such system with a
scalable verifier was given in the works24 of Babai et al. [7, 6] and the first fully scalable PCP, i.e., the first
STIK construction, appears in the works25 of Ben-Sasson et al. [25, 20]. The first ZK-STIK for NP appears
in the work of Ben-Sasson et al. [17], later extended to a ZK-STIK for NEXP [15].

STARK The first realization of a STIK system, i.e., the first STARK, appears in the recent work of Ben-
Sasson et al. [13]; our current publication describes the first realization of a ZK-STIK and is therefore the
first ZK-STARK construction. (See Section 1.3 for other ZK solutions).
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[33] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal of
Computer and System Sciences, 37(2):156–189, 1988.

[34] Arthur Breitman. Scaling tezos. https://hackernoon.com/scaling-tezo-8de241dd91bd,
2017.

[35] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bullet-
proofs: Efficient range proofs for confidential transactions. Cryptology ePrint Archive, Report 2017/1066,
2017. https://eprint.iacr.org/2017/1066.

[36] David G. Cantor. On arithmetical algorithms over finite fields. J. Comb. Theory, Ser. A, 50(2):285–300, 1989.

[37] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and Daniel Smith-
Tone. Report on post-quantum cryptography. US Department of Commerce, National Institute of Standards
and Technology, 2016.

[38] Alessandro Chiesa and Zeyuan Allen Zhu. Shorter arithmetization of nondeterministic computations. Theor.
Comput. Sci., 600:107–131, 2015.

[39] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature cards. In
Proceedings of the 1st Symposium on Innovations in Computer Science, ICS ’10, pages 310–331, 2010.

[40] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297–301, 1965.

[41] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with streaming
interactive proofs. In Proceedings of the 4th Symposium on Innovations in Theoretical Computer Science,
ITCS ’12, pages 90–112, 2012.

[42] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive proofs. Pro-
ceedings of the VLDB Endowment, 5(1):25–36, 2011.

[43] R. Courtland. Google aims for quantum computing supremacy [news]. IEEE Spectrum, 54(6):9–10, June 2017.

[44] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 1999.

[45] Ivan Bjerre Damgr ard. A design principle for hash functions. In G. Brassard, editor, Advances in Cryptology—
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer-Verlag, 1989.

[46] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square Span Programs with Applications
to Succinct NIZK Arguments, pages 532–550. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[47] NG de Bruijn. A combinatorial problem. Proc. Akademe Van Westeschappen, 49(2):758–764, 1946.

[48] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP theorem. In
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pages 155–
164, 2004.

[49] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low communication 2-prover
zero-knowledge proofs for NP. In Proceedings of the 11th Annual International Cryptology Conference,
CRYPTO ’92, pages 215–227, 1992.

[50] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems.
In Proceedings of the 6th Annual International Cryptology Conference, CRYPTO ’86, pages 186–194, 1986.

[51] Shuhong Gao and Todd D. Mateer. Additive fast fourier transforms over finite fields. IEEE Trans. Information
Theory, 56(12):6265–6272, 2010.

26

https://hackernoon.com/scaling-tezo-8de241dd91bd
https://eprint.iacr.org/2017/1066


[52] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In Proceedings of the 30th Annual Conference on Advances in Cryptology,
CRYPTO’10, pages 465–482, Berlin, Heidelberg, 2010. Springer-Verlag.

[53] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645, 2013.

[54] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.
In Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 99–108,
New York, NY, USA, 2011. ACM.

[55] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for boolean circuits.
In 25th USENIX Security Symposium (USENIX Security 16), pages 1069–1083, Austin, TX, 2016. USENIX
Association.
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A Measurements of the ZK-STARK for the DNA profile match

In this section we provide additional raw measurements for proving complexity and verification complexity
for the DPM discussed in Section 1. We used two separate machines to measure performance: a strong
server for the prover, and a “standard” laptop for the verifier.

A.0.1 Prover

Figure 6 shows the running time required to generate the ZK-STARK proofs, both in absolute terms (left)
and as a multiplicative overhead in running time over naı̈ve computation (middle). On the right we plot the
size occupied by the all IOP oracles and Merkle trees used by the prover. Due to space limitations (768GB of
RAM, henceforth called the “RAM threshold”), the actual space used by the prover was lower than plotted
there but saving space required larger running time. Specifically, notice that at n = 214 ≈ 16, 000 the total
space (plotted on right) passes the RAM threshold, corresponding to (and explaining) the jump in proving
time which is noticed on the middle plot at the same value of n. This jump is due to re-computing parts of
the proof oracles on demand, which is required to operate within RAM limits.

The code of the prover (written in C++) has been optimized for large instances and running times, hence
it uses multi-threading (MT) intensively. Our use of MT seems empirically quite efficient; in particular,
disabling MT incurs a slowdown factor close to ×2. The relatively large multiplicative overhead noticeable
on the middle plot for small instance sizes is likely explained by the overhead that the use of MT introduces.
However, since prover execution time is measured in fractions of a second for these short executions we
leave further optimizations of it to future work.
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Figure 6: On the left we plot, on a double-logarithmic scale, prover running time as a function of the number of entries (n) in
the DNA profile database. On the middle we plot the ratio between proving time to naı̈ve execution time; the horizontal axis is
logarithmic (logn) and the vertical one measures ratio. On the right we plot, on a double-logarithmic scale, the total size of all
oracles and their commitment trees (Merkle trees), generated by the prover during execution. See text inline for an explanation for
the “phase transitions” seen in the middle plot.

Prover machine specifications

• CPU (2 units) : Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz (24 cores, 2 threads per core)

• RAM : 768GB DDR4 (32GB ×24, Speed: 2666 MHz)

• SWAP : 3.2TB NVMe (1.6TB ×2)

• Operating System : Red Hat Enterprise Linux 7 (3.10.0-693.5.2.el7.x86 64)
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A.0.2 Verifier

Figure 7 gives the ZK-STARK verifier running time (TV) on the left, and communication complexity on the
right. The verifier is non-adaptive, which means it’s complexity can be measured even for databases sizes n
that are too large to generate a proof for. The values for which an actual proof was generated are indicated
by full circles in both plots.

The ZK-STARK verifier is comprised of two sub-verifiers. The first is the ZK-STIK verifier that verifies
proofs in the “pure” but unrealistic IOP model. The second is the sub-verifier that checks (only) consistency
of values residing in various Merkle trees with previously committed Merkle tree roots (see Section 2.5).
In both plots of Figure 7 the bottom line indicates the complexity of the ZK-STIK verifier, both for time
(left) and communication complexity (right). As evident from the Figure, the ZK-STIK complexity is small
relative to overall complexity. Morevoer, as oracle size increases, the ratio of STIK/STARK complexity
grows smaller. This is because as oracles grow larger, the relevant Merkle trees grow deeper and hence there
are more authentication paths, and each is of larger length.

We executed the verifier in single thread mode; the tests run by it are amenable to parallelization and
faster execution time. However, since verification time is already quite small we leave these further opti-
mizations to future work. Similarly, we point out that the additional memory consumption required by the
verifier is negligible, compared to the communication-complexity. In particular, when the verifier is exe-
cuted on weaker machines than the one reported here (see specificatin below), verification complexity does
not increase significantly.
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Figure 7: Verifier running time (left) and communication complexity (right) as a function of the number of entries (n) in the
DNA database size; for both plots the horizontal axis is logarithmic and the vertical one is linear. In both plots, the lower line
measure the complexity of the ZK-STIK verifier, and the upper line measures that of the ZK-STARK verifier. We stress that verifier
measurements are performed for values of n that are (significantly) larger than those for which a proof can be generated; this is
possible because our verifier is non-adaptive, thus, we tested it with randomly generated “proofs”. Full circles indicate values of n
for which proofs were generated.

Verifier machine specifications

• Model : Lenovo ThinkPad W530 Laptop

• CPU : Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz (4 cores, 2 threads per core)

• RAM : 32GB DDR3 (8GB ×4, Speed: 1600 MT/s)

• Operating System : Arch Linux (4.13.12-1-ARCH)
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B From AIR to ZK-STARK

The purpose of this section is to specify in detail our IOP constructions, expanding on Section 2. The
existence of a ZK-STIK system for NEXP was already established in [17, 15]; thus, our focus is on concrete
efficiency and on a detailed description of the construction realized in code.

For the purposes of the current discussion, an instance of a computational integrity statement, denoted x,
is specified by (i) a transition relation over a space of machines states and (ii) a set of boundary constraints
(like inputs and outputs). A witness to the integrity of x is a valid execution of the computation, given by
an execution trace — a sequence of machine states that adheres to both boundary and transition constraints
of the computation. Casting CI statements like (**) in this format is a straightforward application of the
Cook-Levin Theorem.

AIR
Def. B.3

APR
Def. B.10

RPT
×2

FRI
×2

placement
+ routing

Thm. B.12

algebraic
linking

Thm. B.15

proximity
testing

Thm. B.18

Figure 8: The reduction from an AIR instance to a pair of RPT problems, solved using the FRI protocol.

Overview Our process has 4 parts (see Figure 8):

1. The starting point is a natural algebraic intermediate representation (AIR) of x and w, denoted
xAIR,wAIR. By “algebraic” we mean that states of the execution trace are represented by sequences
of elements in a finite field F, and the transition relation is specified by a set of polynomials over
variables representing the “current” and “next” step of the execution trace.

2. We reduce the AIR representation into a different one, in which states of the execution trace are
“placed” on nodes of an affine graph, so that consecutive states are connected by an edge in that
graph. Informally, an affine graph is a “circuit” that has “algebraic” topology (see Appendix B.3).
The process of “placing” machine states on nodes of a circuit resembles the process of placement
and routing which is commonly used in computer and circuit design, although our design space is
constrained by algebra rather than by physical reality. We refer to the transformation as the algebraic
placement and routing (APR) reduction, and the resulting representation is an APR instance/witness
pair (xAPR,wAPR). This reduction is deterministic on the verifier side, i.e., involves no verifier-side
randomness and no interaction; as such, it also has perfect completeness and perfect soundness. (The
prover uses randomness to obtain zero-knowledge; however, this use does not affect completeness,
nor soundness.)

3. The APR representation is used to produce, via a 1-round IOP, a pair of instances of the Reed-
Solomon proximity testing (RPT) problem. The instances are defined now by the parameters of the
RS code. The two codes resulting from the reduction are over the same field F but have different
evaluation domains (L,Lcmp) and different code rates (ρ, ρcmp). The witness in this case is a pair of
purported codewords (f (0), g(0)). The verifier’s randomness in the 1-round IOP is used (among other
things) to “link” the numerous constraints of the transition relation into a single (random) one. We
thus refer to this step as the algebraic linking IOP (ALI) protocol.
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4. Finally, for each of the two functions (oracles) f (0), g(0), we invoke the fast RS IOP of proximity (FRI)
protocol from [14], and this completes our reduction.

Section organization After setting up notation (Appendix B.1) we formally define our starting points —
the algebraic intermediate representation (AIR) of CI statements (Appendix B.2); this section also includes
the main technical lemmas (Lemmas B.6 and B.9) that prove our main Theorems 3.4 and 3.5, as well as
the lemma on which our ZK-STARK realization relies (Lemma B.7). In Appendix B.3 we formally de-
fine the representation of CI statements that is the output of the algebraic placement and routing (APR)
reduction (Definition B.10) and the APR-reduction (leftmost arrow of Figure 8) appears in Appendix B.4.
Appendix B.5 describes the next step of the reduction (middle arrow of Figure 8) starting with Defini-
tion B.14 of the RS proximity testing (RPT) problem and followed by the algebraic linking IOP (ALI) stated
in Theorem B.15 and discussed later there. Appendix B.6 states the main properties of the FRI protocol that
solves the RPT problem (rightmost arrow of Figure 8). Appendix B.7 uses the components defined earlier
— AIR, APR, ALI, and FRI— to prove our main Theorems 3.4 and 3.5. Appendix B.8 concludes with a
discussion of the particular setting of parameters that our ZK-STARK uses for the DPM computation.

B.1 Preliminaries and notation

Density The density of a subset S′ of a finite set S is µ(S′/S)
4
= |S′|/|S|.

Sets and functions We denote by 0 the constant zero function. For S a set and f a function with domain
S let f(S) = {f(x) | x ∈ S} and for F a set of functions with domain S let F(S) = ∪f∈Ff(S).

Binary fields A finite field is denoted by F and Fq is the field of size q. A binary field is a finite field of
characteristic 2; all fields considered in this paper are binary26. When we use the term affine space for a

subset H ⊂ F that is an additive coset of an F2-linear space, meaning H = α + V
4
= {α+ v | v ∈ V } for

some fixed α ∈ F and V ⊆ F a linear space over the two-element field F2.

Remark B.1 (Canonical representations of binary fields). We assume canonical representation for binary
fields F, given by an irreducible polynomial and a primitive element g ∈ F for it (i.e., g generates F∗). We
use the standard basis

{
1, g, g2, . . . , gn−1

}
to represent F2n over F2. Similarly, for a fixed F2-subspace of

dimension k, the (non-zero) polynomial of degree 2k that vanishes on S will assumed to be known to the
verifier; recall this polynomial is linearized (see [78, Section 3.4]) and has at most k non-zero coefficients.

In particular, when discussing arithmetic complexity of prover and verifier, we assume the representa-
tions of all relevant fields, primitive elements and subspace polynomials are known to both parties. As will
become evident, these depend only on the parameters of the computation (like degree and running time).
This assumption can be made with no significant loss in generality, because the verifier could request the
prover to present all such representations, along with a suitable “proof of primitivity” for g.

Codes We view codewords in a linear error correcting code C over F of blocklength n as functions with
domain S, |S| = n and range F, i.e., C ⊆ FS ; for x ∈ S, the x-entry of a codeword w ∈ C is denoted by
w(x). For v ∈ FS let wv ∈ C be a codeword that is closest to v in relative hamming distance, breaking

26Many of the results here apply, with minimal modifications, to arbitrary fields of small characteristic. For the sake of simplicity
we avoid dealing with this generalization.
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ties arbitrarily (say, by ordering the elements of C arbitrarily and setting wv to be the smallest w ∈ C with
minimal distance to v).

Restrictions For S′ ⊂ S we denote by w|S′ the restriction of w to sub-domain S′ and similarly define
C|S′ = {w|S′ | w ∈ C}, noticing C|S′ ⊆ FS′ .

Interpolants, evaluations and low degree extensions The interpolant of w ∈ FS , denoted interpolantw,
is the unique polynomial P,deg(P ) < |S| satisfying ∀x ∈ S, P (x) = w(x). The multi-point evaluation of
P (X) on domain S is the function f : S → F satisfying f(x) = P (x) for all x ∈ S; when |S| > deg(P ),
the interpolant of this evaluation is P .

Recall the definition of a low degree extension (LDE) from Definition 2.1. We use the following efficient
LDE algorithm of Lin et al. [79].

Theorem B.2 (LDE arithmetic complexity[79]). For F a binary field, S ⊆ F an F2-affine space and
c1, · · · , cn ∈ F there exists an arithmetic circuit computing an advice stringA that requires (n+1)polylog|S|
arithmetic operations in F, and another arithmetic circuit that uses the advice A and computes the LDE of a
function f : S → F to domain

⋃
ci
S+ ci. This latter circuit has arithmetic complexity 3(n+ 1)(|S| log |S|)

over F.

For simplicity we shall ignore the complexity of advice computation, which in negligible compared to
3(n+ 1)(|S| log |S|).

Arithmetic complexity For an arithmetic circuitC with gates of fan-in≤ 2 over the set of gates {+,×,÷},
we denote by Tarith (C) the arithmetic complexity ofC, defined as the total number of gates in the arithmetic
circuit. The multiplication complexity is the number of ×-gates and the addition complexity is similarly de-
fined. For a function f : Fn → Fm whose “canonical circuit” Cf is implicitly known, we abuse notation and
define Tarith (f) = Tarith (Cf ).

Given a set of functions F = {f1, f2, . . . , fm} mapping elements of Fn to F, we denote by Tarith (F)
the (total) arithmetic complexity of F and define it as the the arithmetic of a circuit C : Fn → Fm such that
for any ~v ∈ Fn and any 1 ≤ i ≤ m, C(~v)i = fi(~v).

Functions evaluated on sets of inputs For f : S → Σ a function and S′ ⊂ S let f(S′) = {f(x) | x ∈ S′};
when f(S′) is a singleton set {α} we shall simplify notation and write α = f(S′).

B.2 Algebraic Intermediate Representation (AIR)

An algebraic execution trace of a program running for T steps is represented by a w × T array in which
each entry is an element of a finite field. A single row describes the state of the computation at a certain
point in time, and a single column tracks a “register” and its contents over time. It is straightforward to
reduce (instance,witness) pairs for a relation that defines a language L ∈ NTimeSpace(T̂(n), ŵ(n)) to AIR
instances with algebraic execution traces of size T(n) = O(T̂(n)) and width w(n) = O(ŵ(n)), see, e.g.,
[90] for examples of such reductions.

Definition B.3 (Algebraic internal representation (AIR)). The relation RAIR is the set of pairs (x,w) =
(xAIR,wAIR) satisfying

1. Instance Format: the instance x is a tuple x = (F,T,w,P,C,B) where
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• F is a finite field

• T is an integer representing a bound on running time

• w is an integer representing state width

• P = {P1, . . . , Ps} ⊂ F[X1, . . . , Xw, Y1, . . . , Yw] is a set of constraints. The degree of P is

deg(P)
4
= maxP∈P deg(P )

• C is a monotone boolean circuit over variables Z1, . . . , Zs with multi-input AND and OR gates.
The size of the circuit is the number of gates in it, and its degree, denoted deg(C) is defined
inductively thus:

– the degree of the input variable Zi is deg(Zi) = deg(Pi), where Pi ∈ P is defined above;
– the degree of an AND gate gj with input gates g1, . . . , gt is deg(gj) = max {deg(g1, ), . . . ,deg(gt)}
– the degree of an OR gate gj with input gates g1, . . . , gt is deg(gj) = deg(g1)+. . .+deg(gt)

– finally, deg(C) is the degree of its (single) output gate.

• B is a set of boundary constraints, where each boundary constraint is a tuple (i, j, α) for i ∈
[T], j ∈ [w], α ∈ F

2. Witness Format: The witness w is a set of functions w1, . . . , ww : [T] → F; we say w satisfies the
instance if and only if

(a) For all boundary constraints (i, j, α) we have wj(i) = α

(b) For all t ∈ [T− 1] and we have C(IsZeros(P(w[t], w[t+ 1]))) = TRUE where

• w[t] = (w1(t), . . . , ww(t))

• IsZero : F → {TRUE,FALSE} is the mapping that sends 0 ∈ F to TRUE and all non-
zero elements to FALSE, and IsZerok : Fk → {TRUE,FALSE}k is the natural extension of
IsZero to multiple inputs and outputs, namely, IsZerok(α1, . . . , αk) := (IsZero(α1), . . . , IsZero(αk))

Finally, RAIR is the set of all pairs (x,w) such that w satisfies x, and LAIR
4
= {x | ∃w, (x,w) ∈ RAIR}.

Remark B.4 (Generalization to non-monotone circuits). The reason that we restrict the definition above
to monotone circuits, as opposed to general circuit which are more expressive, is that adding negation
gates to the boolean circuit may destroy perfect completeness, reduce efficiency, or require more rounds
of interaction (depending on the way negation gates are arithmetized). Often (as is the case with our
benchmarks here), it suffices to use De Morgan’s laws to effectively push negation gates to the inputs of C
and incorporate them into the system of polynomials P .

Our reductions will use AIRs in which F is invariably a binary field, and we shall further assume the
witness size and degree are “binary friendly” according to the following definition.

Definition B.5 (BAIR). A binary AIR (BAIR) instance is an AIR instance x = (F,T,w,P,C,B) satisfying
for some n, t, d ∈ N+ (i) |F| = 2n; (ii) T = 2t − 1; and (iii) deg(C) ≤ 2d. We call x an (n, t, d)-BAIR
instance. The relations RBAIR and language LBAIR are the natural restriction of RAIR and LAIR to binary
AIR instances.

The following lemma implies Theorem 3.4, as shown in Appendix B.7. Its statement is “information
theoretic”, i.e., relies on no unproven cryptographic assumptions and holds against computationally un-
bounded provers. In contrast to prior ZK-IOP protocols [22, 15], it fully specifies all constants and uses no
asymptotic notation.
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Lemma B.6 (wi-IOP of knowledge for RBAIR). For soundness error parameter λ : N+ → N+, rate integer
R ≥ 2, and ZK parameter k ≥ 1, let δ =

(
1− 2−R

(
1 + 2−d

))
. Let relation R

(λ,R,k)
AIR denote the restriction

of RAIR to (n, t, d)-BAIR instances that satisfy (i) n > λ+ t + d +R+ k + 2 and (ii) k + t ≥ 6 + log λ+

log log 1
1− δ

10

. Then R
(λ,R)
AIR has a ZK-IOP of knowledge with the following parameters for (n, t, d)-BAIR

instances:

• soundness error at most err = 2−λ

• knowledge error bound at most ε′ = 4 · err

• prover arithmetic complexity

tpF ≤ (9w(t + d +R+ 3) + |P|+ w + Tarith (P) + 12) · 2t+d+R+3,

• verifier arithmetic complexity

tvF ≤ 2

(
|B|2 + d λ+ 2

log 1
1−δ/10

e · (8(w + |Φ|+ Tarith (P) + |B|) + 21(k +R+ t + d + 2))

)
,

• round complexity r = t+d
2 + 2,

• query complexity q ≤ 8d λ+2
log 1

1−δ/10
e · (2w + k + t + d + 2)

We conjecture that the soundness (of two separate components) in the IOP above is not tight. Con-
sequently, we conjecture that the same soundness as above can be obtained with fewer queries, as stated
next.

Lemma B.7 (wi-IOP for RλBAIR with improved conjectured soundness). Assuming Conjectures B.17 and B.19,
the following holds. For soundness error parameter λ : N+ → N+, rate integer R ≥ 3, and ZK param-
eter k ≥ 1, let relation R

′(λ,R,k)
AIR denote the restriction of RAIR to (n, t, d)-BAIR instances that satisfy

(i) n > max {58, λ, t + d +R+ k} + 2 and (ii) k + t > 5 + logdλ+2
R e. Then R

′(λ,R)
AIR has a ZK-IOP of

knowledge with the following parameters for (n, t, d)-BAIR instances:

• soundness error and round complexity as stated in Lemma B.6,

• verifier arithmetic complexity

tvF ≤ 2|B|2 + dλ+ 2

R
e · (16(w + |Φ|+ Tarith (P) + 42 · (k +R+ t + d + 2)))

• query complexity q ≤ 4 ·
(
d λ+2
R+de · (w + 3 + k + t + d) + dλ+2

R e · (3w + 3 + k + t + d)
)

• prover arithmetic complexity

tpF ≤
(

9w(t + d +R+ 3) + |P|+ w + Tarith (P) + 12d λ+ 2

n− (10 + 2 log n)
e
)
· 2t+d+R+3
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Definition B.3 assumes that the full machine state is captured by w field elements. Certain computations
require as much space complexity as time complexity (w = Ω(T)), leading to AIR witnesses of total size
Ω(w ·T) = Ω(T2). To reach witnesses of size O(T log T), irrespective of memory consumption, we require
the following definition. It follows the approach of [19, 20] and uses a pair of AIR constraints — one for
verifying the validity of consecutive time steps and another for verifying memory consistency; the latter set
of constraints is applied to a permutation of the steps of the execution trace, and part of the witness is a
specification of this permutation. We call this relation the permuted algebraic intermediate representation
(RPAIR).

Definition B.8 (Permuted algebraic intermediate representation (PAIR)). The relation RPAIR is the set of
pairs (x,w) = (xPAIR,wPAIR) satisfying

1. Instance Format: the instance x is a tuple x = (F,T,w,PT,Pπ,B) where

• F is a finite field

• T is an integer representing a bound on running time

• w is an integer representing state width

• PT,Pπ ⊂ F[X1, . . . , Xw, Y1, . . . , Yw] are two sets of constraints.

• B is a set of boundary constraints, where each boundary constraint is a tuple (i, j, α) for i ∈
[T], j ∈ [w], α ∈ F

2. Witness Format: The witnessw is a pair (ŵ, π) where ŵ is a sequence of w functionsw1, . . . , ww : [T]→
F, and π : [T]→ [T] is a permutation; we say w satisfies the instance if and only if

(a) For all boundary constraints (i, j, α) we have wj(i) = α

(b) For all t ∈ [T− 1] and for all P ∈ PT we have P (w[t], w[t+ 1]) = 0

(c) For all t ∈ [T− 1] and for all P ∈ Pπ we have P (w[t], w[π(t)]) = 0

Finally, RPAIR is the set of all pairs (x,w) such thatw satisfies x, and PAIR
4
= {x | ∃w, (x,w) ∈ RAIRwRAM}.

We define the sub-relation of binary PAIR (BPAIR) analogously to the definition of binary AIR in
Definition B.5.

LPAIR is NEXP-complete, as stated next. We omit the proof, which appears, e.g., in [90].

Lemma B.9 (wi-STIK for BPAIR). For every language L ∈ NTIME(T (n)), T (n) ≥ n there exists a
deterministic polynomial time reduction from L to LPAIR, mapping an instance x of L to an instance x =
(F,T,w,PT,Pπ,B) of LPAIR that satisfies

• T = O(T (n)),

• w = O(log T (n)),

• deg(PT ∪ Pπ) = O(1), |PT ∪ Pπ| = O(log T (n)), and Tarith (P) = O(log T (n)),

• |B| = O(n).

Furthermore, a nondeterministic witness w for x can be computed in time O(T (n) log T (n)) +nO(1), given
x and a nondeterministic witness w for the membership of x in L.
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B.3 Algebraic placement and routing (APR)

The phase in circuit design known as placement and routing deals with laying out states of a computation as
to optimize certain physical constraints. Our next phase does something similar, placing and routing infor-
mation about the states of a computation in a way that optimizes algebraic, rather than physical, constraints;
hence we call it the algebraic placement and routing (APR) binary relation.

Recall that Aff1(F) denotes the 1-dimensional affine group over F, its set of elements is isomorphic to
{aX + b | a ∈ F∗, b ∈ F}. An affine graph generated by a setN = {N1, . . . , Ns} ⊂ Aff1(F) is the directed
graph with vertex set F and edge set {(x,N(x)) | x ∈ F, N ∈ N}.

In the following definition, the set Φ captures both boundary, and transition, constraints of the compu-
tation. The affine graph is added to the instance description via its generating set N . Due to the algebraic
topology, each column of the algebraic execution trace (corresponding to a register, tracked over time) is now
a Reed Solomon codeword of rate ρ and the sequence of rates (one rate per register/column) is also part of the
instance description. As explained in Section 2.3, our construction differs from prior works [27, 20, 38, 13]
by using a separate codeword for each algebraic register.

Definition B.10 (Algebraic placement and routing (APR) problem). The relation RAPR contains all pairs
(x,w) satisfying the following requirements:

1. Instance Format: the instance x is a tuple x = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) where

• F is a finite field of characteristic 2.
• T is a set of indices called the algebraic-register indices.
• N ⊆ T × Aff1(F) is a set of pairs called neighbors, each pair contains an algebraic-register

index, and a member of the affine group over F (a polynomial of degree exactly 1). Given a set
S ⊂ F we denote by N (S) the set N (S) := {N(x) | x ∈ S, (τ,N) ∈ N for some τ ∈ T }.

• Φ ⊆
(
F× FN

)
→ F is a set of mappings over the variables V := {Xloc} ∪ {XN}N∈N .

Assignments to any φ ∈ Φ expressed by mappings α : V → F. Given a set S ⊂ F and a sequence
of functions indexed by elements of T , ~f ∈

(
FN (S)

)T
, denote by α~f,N : S → FV the mapping

defined by
[
α~f,N (x)

]
Xloc

:= x, and for every (τ,N) ∈ N ,
[
α~f,N (x)

]
(τ,N)

:= fτ (N(x)). Given

φ ∈ Φ we denote by φN
[
~f
]
∈ FS the vector defined by

[
φN

[
~f
]]
x

:= φ
(
α~f,N (x)

)
for every

x ∈ S.
• L and Lcmp are two F2-affine subspaces of F called the witness evaluation space and the com-

position evaluation space respectively;
• ~ρ ∈ (0, 1)T is a sequence of rates called the witness rates, and ρcmp ∈ (0, 1), called the

composition rate.

2. Witness format and satisfiability: Awitness ŵ is a sequence of functions indexed by elements from
T ; formally, ŵ ∈

(
LF)T . We say ŵ satisfies x if both of the following hold:

• assignment code membership: ∀τ ∈ T : wτ ∈ RS[F, L, ρτ ]

• constraint code membership: ∀φ ∈ Φ, φN [ŵ] ∈ RS[F, Lcmp, ρcmp]

Let RAPR be the binary relation containing all pairs (x, ŵ) such that x is an instance as defined above and
ŵ satisfies x, and let APR be the nondeterministic language induced by RAPR,

APR = {x | ∃ŵ, (x, ŵ) ∈ RAPR} . (6)
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The three properties defined next are used later to prove zero knowledge and to provide better soundness
bounds.

Definition B.11 (APR properties). We say an instance x := (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) ∈ APR

1. is κ-independent if there is a sequence of sets {Vτ}τ∈T such that each Vτ ⊂ FL is κ|L|-independent,
and for any ŵ such that wτ ∈ Vτ , it holds that ŵ satisfies x. Let TSampling(·) denote the arithmetic
complexity of the circuit, that on input wτ ∈ Vτ (and random field elements), samples a uniformly
random w ∈ {Vτ}τ∈T .

2. has δ-distance if:

• δ ≤ 1− ρcmp.

• δ ≤ 1− ρτ for any τ ∈ T .

• There exists some linear code C ⊂ FLcmp of relative distance at least δ, containing the code
RS[F, Lcmp, ρcmp], such that for any sequence of mappings ~f ∈

(
FL
)T where fτ ∈ RS[F, L, ρτ ]

for all τ ∈ T , it holds ∀φ ∈ Φ, φN [ŵ] ∈ C.

3. is Θ-overlapping if for any y ∈ L the size of the set Sy := {x ∈ Lcmp | y ∈ N ({x})} is at most Θ.

B.4 APR reduction

The following pair of theorems describe the first step of our reduction, in which a BAIR, or BPAIR, instance-
witness pair, is reduced to an APR instance-witness pair. The reductions are deterministic and have no error
associated with them. Since the instance-side reduction is carried out by the verifier, and the witness-
side reduction by the prover, we denote the two reductions of Theorem B.12 by VBAIR→APR,PBAIR→APR,
respectively, and those of Theorem B.13 are denoted VBPAIR→APR,PBPAIR→APR.

The ideas used in both reduction are based on ideas from [91, 25, 27, 19, 38] where affine graphs are
used to encode and verify program traces. The current construction is most similar to the one used in [13],
where a cyclic graph is used to embed known to verifier order of the trace, usually used to verify two
consecutive configurations are consistent, and a back-to-back De Bruijn graph to verify a permutation not
known to the verifier, usually used to verify the memory consistency. The novelty in the construction in
[13] in apposed to previous construction is (i) the usage of a cyclic graph for consecutive configurations
consistency testing, (ii) using back-to-back butterfly De Bruijn of to represent permutations instead of a
‘straight De Bruijn graph which is ×2.5 bigger, and (iii) selectively routing on the De Bruijn graph only a
small part of the configuration. All those reduce the size of the witness, effectively reducing the degrees of
polynomials handled by the proof system, and the concrete efficiency of the prover. The novel technique
in this work uses the techniques in [13], and additionally splits the witness to several polynomials, each of
degree much smaller then what needed to represent the whole witness, effectively reducing further more
the degree of polynomials handled by the proof system. As described in Appendix D.1, the proof-system
protocol uses interactivity to eliminate the need to provide separate proof of RS-proximity to each witness
polynomial. The reductions use the ZK-IOP construction introduced [17], preparing the APR instance and
witness for the zero-knowledge protocol described in Appendix D.1.

Theorem B.12 (Algebraic placement and routing). There are two algorithms VBAIR→APR,PBAIR→APR such
that for any k,R, t, d ∈ N+ and BAIR instance x = (F,T,w,P,C,B) with T = 2t − 1 > 4, degP ≤ 2d,
and |F| = 2n with n > 2 + k +R+ t + d:

40



1. Perfect completeness: (x,w) ∈ RAIR ⇒ (VBAIR→APR(x, k,R),PBAIR→APR(x,w, k,R)) ∈ RAPR

2. Perfect soundness: x ∈ AIR⇐ VBAIR→APR(x, k,R) ∈ APR

3. Knowledge extraction: There is an efficient knowledge extractor EBAIR→APR, such that for every
(VBAIR→APR(x, k,R),wAPR) ∈ RAPR, the extractor outputs a witnessw← EBAIR→APR (x, k,R,wAPR)
such that (x,w) ∈ RAIR

4. Let xAPR = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) = VBAIR→APR(x, k,R):

(a) |T | = w

(b) |N | = 3w, with same 3 neighbor polynomials for each witness index τ ∈ T
(c) |Φ| ≤ 2|P| and Tarith (Φ) ≤ 2Tarith (P) + 3t +O (w · |P| · |B|)
(d) log2 |L| = 2 + k +R+ t + d

(e) log2 |Lcmp| = k +R+ t + d

(f) The maximal rate ρmax in ~ρ satisfies ρmax ≤ 2−(2+R+d)

(g) ρcmp ≤ 2−R

(h) xAPR is
(
1− 2−R

(
1 + 2−d

))
-distance, 1-overlapping, and

(
2−(2+R+d)(1− 2−k)

)
-independent

with TSampling (xAPR) ≤ Õ (|L|)

5. Arithmetic complexity over F (cf. Remark B.1):

(a) Verifier: The arithmetic complexity of VBAIR→APR(x, k,R) is that which is required to compute
the polynomials ZB,j , EB,j ∈ F[x] for all 1 ≤ j ≤ w (Appendix C.1.1), and in particular, it is at
most 2 |B|2 arithmetic operations27.

(b) Prover: The arithmetic complexity of PBAIR→APR(x,w, k,R) is at most the accumulated arith-
metic complexity of (i) the arithmetic complexity of VBAIR→APR(x, k,R), (ii) 2t multiplications
and additions over F, (iii) 3w low degree extension (LDE) computations (cf. Definition 2.1), each
over an affine space of dimension at most k + t, with evaluation over at most 2R+d+2 shifts; in
particular, each LDE can be computed in arithmetic complexity at most 3 · (k + t) · 2k+t+R+d+2

(see Theorem B.2).

The following theorem is the analog of the previous one, stated for the RBPAIR rather than for RBAIR.

Theorem B.13 (Algebraic placement and routing – permuted version). There are two algorithms, de-
noted VBPAIR→APR,PBPAIR→APR, such that for any k,R ∈ N, with R > 1, and BPAIR instance x =
(F,T,w,PT,Pπ,B) with T = 2t− 1 > 4, max {degPT, degPπ, 2} ≤ 2d, and [F : F2] > 2 + k +R+ t +
dlog (t + 1)e+ d:

1. Perfect completeness: (x,w) ∈ RBPAIR ⇒ (VBPAIR→APR(x, k,R),PBPAIR→APR(x,w, k,R)) ∈
RAPR

2. Perfect soundness: x ∈ BPAIR⇐ VBPAIR→APR(x, k,R) ∈ APR

27For large sets of boundary constraints, one may modify the construction so that ZB,j is a linearized polynomial, in which case
the arithmetic complexity decreases to O(|B| log |B|); details omitted because typically |B| is small.
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3. Knowledge extraction: There is an efficient knowledge extractor EBPAIR→APR, such that for every
(VBPAIR→APR(x, k,R),wAPR) ∈ RAPR, the extractor outputs a witnessw← EBPAIR→APR (x, k,R,wAPR)
such that (x,w) ∈ RBPAIR

4. Let xAPR = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) = VBPAIR→APR(x, k,R):

(a) |T | = 2 (w + 1)

(b) |N | ≤ 11|T |, with same 11 neighbor polynomials for each witness index τ ∈ T
(c) |Φ| ≤ 2|PT|+|Pπ|+8w+11 and Tarith (Φ) ≤ 2Tarith (PT)+Tarith (Pπ)+O (w (|PT|+ |Pπ|) + t)

(d) log2 |L| = 2 + k +R+ t + dlog (t + 1)e+ d

(e) log2 |Lcmp| = k +R+ t + dlog (t + 1)e+ d

(f) The maximal rate ρmax in ~ρ satisfies ρmax ≤ 2−(2+R+d)

(g) ρcmp ≤ 2−R

(h) xAPR is
(
1− 2−R

(
1 + 2−d

))
-distance, 5-overlapping, and

(
2−(2+R+d)(1− 2−k)

)
-independent

with TSampling (xAPR) ≤ Õ (|L|)

5. Arithmetic complexity over F (cf. Remark B.1):

(a) Verifier: The arithmetic complexity of VBPAIR→APR(x, k,R) is that which is required to compute
the polynomials ZB,j , EB,j ∈ F[x] for all 1 ≤ j ≤ w (Appendix C.1.1), and in particular, it is at
most 2 |B|2 arithmetic operations.

(b) Prover: The arithmetic complexity of PBPAIR→APR(x,w, k,R) is at most the accumulated arith-
metic complexity of (i) the arithmetic complexity of VBPAIR→APR(x, k,R), (ii) the complexity of
routing a back-to-back De Bruijn butterfly network of dimension t (Theorem G.3) (iii) 2t +
2dlog(t+1)e multiplications and additions over F, (iv) 5(w + 1) low degree extension (LDE) com-
putations (cf. Definition 2.1), each over an affine space of dimension at most k+t+dlog (t + 1)e,
with evaluation over at most 2R+d+2 shifts; in particular, each LDE can be computed in arith-
metic complexity at most 3 · (k + t + dlog (t + 1)e) · 2k+t+dlog(t+1)e+R+d+2 (see Theorem B.2).

B.5 Algebraic linking IOP (ALI)

The output of the reductions described in the previous section are pairs in the relation RAPR. The next phase
in our reduction uses a 1-round IOP, called the algebraic linking IOP (ALI), to reduce the problem to a pair
of binary RS proximity testing (BRPT) problems. The following definition formally defines the relation
underlying the problem, adding to the informal discussion in Section 2.1).

Definition B.14 (Binary RS proximity testing (RPT)). Instances of the RS proximity testing problem (RPT)
are triples xRS = (F, S, ρ) where S ⊆ F and ρ ∈ [0, 1]. A witness wRS for xRS is a function wRS : S → F,
and we say it satisfies xRS iff and only ifwRS ∈ RS[F, S, ρ]. The relation RRPT is the set of pairs (xRS,wRS)
such that wRS satisfies xRS.

The binary RPT relation (RBRPT) is one in which the instance satisfies:

• F is a binary field
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• S is an affine coset of an F2-linear subspace of F, defined by a coset shift a0 and a basis (a1, . . . , ak)

such that S =
{
a0 +

∑k
i=1 αiai | α1, . . . , αk ∈ F2

}
• ρ = 2−R forR ∈ N+.

The following theorem describes the main properties of the ALI protocol. This protocol, described in
Appendix D.1, takes an instance-witness pair of RAPR and uses one round of interaction to reduce it to two
instance-witness pairs of the RBRPT relation.

Theorem B.15 (Algebraic linking IOP (ALI) properties). Let x := (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) be a Θ-
overlapping and δ-distance APR instance with δ > 0. The ALI protocol, applied to x, satisfies the following
properties:

1. Protocol Schedule

(a) Prover: On input (x,w′), the output of PALI(x,w′) is a single oracle Oassignment comprised of
|T |+ 1 functions in FL and a single function in FLcmp;

(b) Verifier: On input x the output of VALI(x) is a single messageR comprised of 2|T |+|Φ| random
field elements and a pair xRS = (F, L, ρmax), x′RS = (F, Lcmp, ρcmp) of instances of the BRPT
relation.

(c) Induced output: The oracle Oassignment and verifier randomness define a pair of functions
f (0) : L → F and g(0) : Lcmp → F, such that each entry of f (0) depends on |T | + 1 entries of
Oassignment and each entry of g(0) depends on |N |+ 1 entries of Oassignment.

2. Completeness If x is satisfied by w′ then for any randomness R we have f (0) ∈ RS [F, L, ρmax] and
g(0) ∈ RS [F, Lcmp, ρcmp].

3. Soundness Let

ζ
4
= max

{
4, 1 + Θ

|L|
|Lcmp|

}
. (7)

If x 6∈ APR then for every Oassignment at least one of the following holds,

(a) PrR

[
∆H

(
f (0),RS [F, L, ρmax]

)
< δ

2ζ

]
≤ 1
|F|

(b) PrR

[
∆H

(
g(0),RS [F, Lcmp, ρcmp]

)
< δ

2ζ

]
≤ 1
|F|

4. Knowledge extraction Assume ρmax ≤ 1
4 . Then there exists a Las Vegas (randomized) polyno-

mial time algorithm E for which the following holds. If w∗ does not satisfy both conditions claimed
in Items 3a and 3b above, then the output of E on input (x,w∗) is a witness w′ that satisfies x.

5. Perfect Zero Knowledge If the instance x is κ-independent, then the ALI protocol has perfect zero
knowledge against any verifier that makes at most κ|L| queries to each wτ . This holds for any choice
of RS-IOPP sub-protocols used in step 2c of the protocol (cf. Appendix D.1).

6. Arithmetic complexity

(a) Prover: Assuming prover has w′ satisfying x, prover arithmetic complexity is at most

|T | · |L| · (3 log |L|+ 5) + 2 |Lcmp| · (Tarith (Φ) + |Φ|+ 1) (8)

where Tarith (Φ) denotes the sum of the arithmetic complexities of the constraint set Φ.
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(b) Verifier: VALI requires no arithmetic complexity, and involves only sampling 2|T | + |Φ| uni-
formly random field elements from F.

B.5.1 On the soundness error of the ALI protocol

The probability that the “bad event” in which neither of Items 3a and 3b holds, is 1
|F| , translating to a lower

bound on soundness error of at least 1/|F|. Repeating Step 1b for a number k of times, each with independent
randomnessR1, . . . , Rk, reduces soundness error to 1

|F|k . We stress that for constant k, the increase in prover
arithmetic complexity is negligible. Prover complexity is dominated by the computation of Item 1a which
is executed only once, and requires O(|L| · log |L|) operations (first summand of Equation (8)); subsequent
steps are linear in |L| (second summand of Equation (8)).

We conjecture the soundness error of the ALI protocol is lower than stated Item 3 above. In particular,
we believe the denominator 2ζ on the left hand side of Items 3a and 3b is not tight. Our ZK-STARK uses the
FRI protocol as the RS-IOPP in the ALI protocol, thus, we state our next conjecture regarding ALI soundness
in a manner that will be amenable to the soundness analysis of the FRI protocol.

Blockwise distance — notation Recall the notion of the blockwise distance measure used by FRI; cf. [14,
Section 3]. In particular, for L ⊂ F an affine space and L0 ⊂ L a subspace of size |L0| = 2η, we define the
L0-blockwise distance between f, g : L → F be the fraction of cosets S of L0 in L on which f |S 6= g|S ,
and let S(L0, L) denote the set of cosets of L0 that are contained in L.

With this notation in mind, we say thatL0 andL′0 are good for an instance x = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp),
if (i) L0 ⊂ L and L′0 ⊂ Lcmp, and (ii) for every neighbor N ∈ N and subset Ŝ ⊆ S(L′0, Lcmp), it holds that∣∣∣∣∣∣

S ∈ S(L0, L) | S ∩N

⋃
Ŝ∈Ŝ

Ŝ


∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
⋃
Ŝ∈Ŝ

Ŝ

∣∣∣∣∣∣ .
Informally, this condition means that attempting to change the all entries of the union of cosets in Ŝ by
changing entries of w∗ in the set N

(⋃
Ŝ∈Ŝ Ŝ

)
will modify at least as many cosets of S(L0, L) as there are

elements in
⋃
Ŝ∈Ŝ Ŝ.

Conjecture B.16. Suppose x = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) is an unsatisfiable instance of ALI with δ-
distance, and let L0, L

′
0 be good for x and satisfy |L0| = |L′0| = 2η. Let δ(0)(f (0)) denote the distance

of f (0) from RS[F, L, ρmax] using the blockwise distance measure induced by L0. Similarly, let δ(0)(g(0))
denote the distance of g(0) from RS[F, Lcmp, ρcmp] using the blockwise distance measure induced by L′0.
Notice δ(0)(f (0)) and δ(0)(g(0)) are random variables that depend on the verifier randomness R. Then

Pr
R

[
δ(0)(f (0)) < min

{
1− ρmax,

2η|Lcmp|
|L|

·
(
δ − δ(0)(g(0))

)}]
≤ 1

|F|
(9)

For practical security purposes, weaker conjecture like the one below may suffice. In what follows, a
pseudo-prover P∗ is a polynomially-bounded randomized machine that acts as a prover in the ALI protocol
above.

Conjecture B.17. For every pseudo-prover P∗ and sufficiently large instance x = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp),
we have

Pr
[
δ(0)

(
f (0)

)
< 1− ρmax ∧ δ(0)

(
g(0)
)
< 1− ρcmp

]
≤ 1

|F|
. (10)

The probability above is over the randomness of both P∗ and V.
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See Appendix D.3 for a discussion of these conjectures.

B.6 Fast Reed-Solomon (RS) IOP of Proximity (IOPP) (FRI)

We now recall the main results of the FRI interactive oracle proof of proximity (IOPP) protocol, as stated in
[14]. We assume familiarity with the definition of IOPP (see, e.g., [14, Definition 1.1]).

Theorem B.18 (FRI properties). The RS code family of rate ρ = 2−R,R ≥ 2,R ∈ N has an IOPP (FRI)
with the following properties, where N = |L| denotes blocklength (which equals Prover’s input length for a
fixed RS[F, L, ρ] code):

• Schedule and rounds: The protocol has two phases; during the first phase (COMMIT), verifier sends
public randomness and prover sends oracles; round complexity is d (logN)−R

2 e. During the second
phase (QUERY), verifier queries the oracles and reaches a decision (prover does not participate in
this phase).

• Prover: prover complexity is less than 6N arithmetic operations in F; proof length is less than N/3
field elements and round complexity is at most logN

2 ;

• Verifier: for query-repetition parameter ` ∈ N+, query complexity is 2` logN ; the verifier decision
is computed using at most ` · 21 logN arithmetic operations over F

• Soundness: There exists δ0 ≥ 1
4 (1− 3ρ) − 1√

N
such that every f that is δ-far in relative Hamming

distance from the code, is accepted with probability at most

errFRI (δ)
4
=

3N

|F|
+ (1−min {δ, δ0})` . (11)

where ` ∈ N+ is the repetition parameter defined above.

• Parallelization: Each prover-message can be computed in O(1) time on a Parallel Random Access
Machine (PRAM) with common read and exclusive write (CREW), assuming a single F arithmetic
operation takes unit time.

We conjecture that soundness is nearly equal to the blockwise distance measure δ(0), for any distance
value δ(0), even when δ(0) ≈ 1− ρ. The following conjecture formalizes this; see [14] for a discussion of it.

Conjecture B.19. Using the notation of Theorem B.18, for any f : L → F of blockwise distance δ(0) from
RS[F, L, ρ], |L| = 2k and ε ∈ [0, δ(0)], with probability at least

1− (k)2 · 2η

ε · η2 · |F|
(12)

over the randomness of the verifier during the COMMIT phase, the probability of rejection during the
QUERY phase is at least 1− δ(0) (1− ε).

B.7 Proof of main theorems

In this section we prove Theorems 3.4 and 3.5 and Lemma B.6.
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B.7.1 Proof of Main Theorem 3.4

We start with the following lemma. Its proof follows immediately from the proof of Cook–Levin Theorem,
hence we omit it. Often the reduction from a general computations to the relevant BAIR instance may
benefit from the ambient field structure, and lead to reductions that are concretely more efficient than a
general-purpose reduction. Indeed the BAIR that corresponds to our DPM example is constructed in this
way (cf. Appendix E).

Lemma B.20 (Reduction to BAIR). Given L ∈ NTimeSpace(T (n), S(n)), there exists a reduction map-
ping an instance x of L of size n to an (n, t, d)-BAIR instance xBAIR = (F,T,w,P,C,B) in time in time
poly(n, n) (see Remark B.1). The resulting xBAIR satisfies the conditions of Lemma B.6, and furthermore

w = S(n) +O(1), t = log T (n) +O(1), |B| = n, Tarith (P) = O(S(n)) and d = O(1). (13)

The asymptotic constants above are independent of n.
Given x, xBAIR as above, and a witnessw such that (x,w) ∈ RL, a BAIR witnesswBAIR (xBAIR,wBAIR) ∈

RBAIR can be computed in time poly(T (n)·S(n), n). Vice versa, given x, xBAIR,wBAIR such that (xBAIR,wBAIR) ∈
RBAIR, a witness w such that (x,w) ∈ RL can be computed (or extracted) in time poly(T (n) · S(n), n).

Proof of Theorem 3.4. Given instance x of L of size n, denote T = T (n), S = S(n) and λ = λ(n). Set
R = 3 and let δ = (1 − 2−R(1 + 2−d)), for d given by Lemma B.20; notice δ is independent of n (which
we have yet to specify). Let k be the smallest positive integer such that t + k > 6 + log λ + log log 1

1− δ
10

,

noticing k ≤ λ+O(1). Now let n = λ+ t+d+R+k+3, noticing n ≤ 2λ+ t+O(1). Apply Lemma B.20
and let xBAIR be the resulting (n, t, d) instance. By construction, this instance satisfies the assumptions
of Lemma B.6, so we apply the ZK-IOP of knowledge specified there to xBAIR. Soundness, knowledge
extraction and round complexity follow directly from Lemmas B.6 and B.20. Query, verifier, and arithmetic
complexity also follow directly from these two lemmas, by using the bounds stated in Equation (13) above.
This completes the proof.

B.7.2 Proof of Main Lemma B.6

Proof of Lemma B.6. We are given an instance-witness pair (xBAIR,wBAIR) for RBAIR where xBAIR =
(F,T,w,P,C,B) satisfies the assumptions of the the lemma.

Protocol description Prover and verifier apply the following reductions:

1. the deterministic reduction of Theorem B.12: the prover executes PBAIR→APR(xBAIR,wBAIR), lead-
ing to the witness wAPR; the verifier executes VBAIR→APR(xBAIR). By Theorem B.12 the result-
ing instance xAPR = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) has parameters as stated in Item 4 there; ad-
ditionally, xAPR is 1-overlapping, 2−(2+R+d)(1 − 2−k))-independent and has δ-distance for δ =
(1− 2R(1 + 2−d));

2. the 1-round ALI protocol on (xAPR,wAPR): Prover sends the oracle Oassignment, then verifier sends
public randomness that, with Oassignment, induces a a pair of functions f (0) : L→ F, g(0) : Lcmp → F
that we denote by wRS,w

′
RS, respectively. Notice that the parameter ζ defined in Equation (7) equals

5 because xAPR is 1-overlapping and |L|
|Lcmp| = 4

46



3. the FRI protocol is now applied to each the two witnesses; Verifier uses instances (i) xRS = (F, L, ρmax)
for wRS, and (ii) x′RS = (F, Lcmp, ρcmp) for w′RS. The repetition parameter in both cases is set to

` = d λ+ 2

log 1
1−δ/10

e. (14)

Completeness Perfect completeness follows directly from the perfect completeness of the various reduc-
tions: If (xBAIR,wBAIR) ∈ RBAIR then by the completeness part of Theorem B.12 the pair (xAPR,wAPR) ∈
RAPR; so, by the completeness of Theorem B.15 (xRS,wRS) and (x′RS,w

′
RS) belong to BRPT, hence, by the

completeness of Theorem B.18 the verifier accepts both with probability 1.

Soundness Suppose xBAIR 6∈ LBAIR. Then by the soundness of Theorem B.12 we also have xAPR 6∈ LAPR.
Hence, by the soundness of Theorem B.15 we have with all but probability εALI = 1/|F| ≤ 2−(λ+3) have
that at least one of f (0), g(0) is δ(0)-far from the relevant RS code, where δ(0) = δ

2ζ = δ
10 ; assume f (0) is it

(the analysis for g(0) is identical). Notice that δ(0) < δ0 for δ0 as defined in Theorem B.18 because R ≥ 2.
Therefore, by Theorem B.18, but for probability errCOMMIT = 3|L|

|F| < 2−λ+3 over the randomness of the

COMMIT phase, the probability of accepting f (0) during the QUERY phase, conducted with repetition
parameter `, is at most

errQUERY =

(
1− δ

10

)`
≤ 2−(λ+2). (15)

Summing up, the total probability of error is at most errALI + errCOMMIT + errQUERY ≤ err, as claimed.

Knowledge extraction Let P∗ be a (not necessarily honest) prover that interacts with the verifier specified
by the protocol above, and which leads that verifier to accept with probability p > 4 · err. Therefore,
with probability at least O(1/(p − err)), the oracle O∗assignment provided by the Prover at the end of step
1 above, leads the verifier to accept with probability > 2err. Fix such an O∗assignment. By the soundness
of the FRI protocol as stated in Theorem B.18 and our setting of parameters, we conclude that that with
probability strictly greater than 1/|F| both ∆H

(
f (0),RS[F, L, ρ]

)
< δ

2ζ and ∆H

(
g(0),RS[F, Lcmp, ρcmp]

)
<

δ
2ζ . Noticing ρmax = 2−R ≤ 1/4, the knowledge extractor of Theorem B.15 outputs with high probability
a witness wAPR that satisfies xAPR. Hence, by the knowledge extraction property of Theorem B.12, Item 3,
we conclude that a witness wAIR can be extracted from P∗ in time poly

(
T

p−err

)
as claimed.

Query complexity The query complexity of the verifier is the sum of queries to the FRI oracles; we use
the protocol and set η = 2 in [14, Theorem 3.3]), leading to round complexity r = log |L|−R

2 and 2η = 4

queries to each oracle per test (there are ` many tests). Each query to f (0) is simulated by making a single
query to each of the w members of wAPR and a single query to fmask, and each query to g(0) is simulated by
making 3 queries to each member of wAPR and a single query to gmask. Using the value of ` above, and the
equalities dim(L) = 2 + dim(Lcmp) = k +R + t + d + 2 from Theorem B.12, total query complexity is
thus

q = 2η · ` · (4w + 2 + dim(L)−R+ dim(Lcmp)−R)

= 2η+1 · ` · (2w + k + t + d + 2)

= 8d λ+ 2

log 1
1−δ/10

e · (2w + k + t + d + 2) (16)
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Verifier arithmetic complexity The arithmetic complexity of the verifier is the sum of four sub-components:
(i) the computation of the polynomials arising from the boundary constraints described in Item 4h, at a cost
of at most 2 |B|2 arithmetic operations (see Footnote 27); (ii) the arithmetic complexity of the FRI verifier,
at a cost of 21 · ` · log |L|, (iii) the cost of computing an entry of f (0) from w, which costs 4(w + 1) op-
erations per query (each test makes 2η = 4 such queries), and (vi) the computation of g(0), which costs
4(|Φ|+ Tarith (Φ) + 1), where Tarith (Φ) = Tarith (P) + |B|; recall that here we also make 4 queries per test.
Summing up, total verifier arithmetic complexity is

tv ≤ 2 |B|2 + ` · (16(w + |Φ|+ Tarith (Φ)) + 2 · 21(k +R+ t + d + 2))

= 2

(
|B|2 + d λ+ 2

log 1
1−δ/10

e · (8(w + |Φ|+ Tarith (P) + |B|) + 21(k +R+ t + d + 2))

)
(17)

Prover arithmetic complexity Inspection of the prover arithmetic complexity shows that the compo-
nents that dominate it are the 3 · w low degree extension computations, each over a space of size at most
2k+t+R+d+2. In fact, this is the only phase of the prover that requires arithmetic complexity that is super-
linear in |L|. The computation of f (0) and g(0) require |L| · (4|Φ| + 4w + Tarith (P) + |B|) arithmetic
operations and the two invocations of the FRI prover cost 2 · 6 · |L| operations. This completes the analysis
of prover complexity.

Zero knowledge By Theorem B.12, Item 4h, the instance xAPR is κ-independent for κ = 2−(2+R+d)(1−
2−k) and |L| = 22+k+R+t+d. By Item 5 of Theorem B.15, if κ|L| is greater than the number of queries
made into each member wτ of Oassignment then the protocol has perfect zero knowledge. We have

κ|L| = 22+k+R+t+d−(2+R+d)(1− 2−k) = 2k+t(1− 2−k) ≥ 2k+t−1. (18)

The last equality holds because k ≥ 1.
A single query to f (0) requires a single query to f (0)

τ and a single query to g(0) requires 3 queries to
each f (0)

τ . Each test of the FRI verifier makes 2η = 4 queries to either f (0) or g(0) and we use the repetition
parameter ` defined above. Therefore, the total number of queries into each wτ is bounded 16 ·`. Combining
this number with Equation (18) shows that for t ≥ 4 + log ` the protocol has perfect zero knowledge, thus,
it holds for

k + t ≥ 6 + log λ+ log log
1

1− δ
10

.

B.7.3 Proof of Lemma B.7

Proof of Lemma B.7. The proof is essentially the same as that of Lemma B.6, with the following changes
to the protocol description. We use a smaller field, as specified in the statement of Lemma B.7. In Step 3
of the protocol above, we repeat the FRI-COMMIT phase more than once on f (0), g(0), leading to several
sets of oracles; let s denote the number of COMMIT repetitions (to be specified below). Additionally, we
use different repetition parameters for f (0) and g(0), and both are smaller than specified above. Finally, each
QUERY invocation is applied to a randomly selected COMMIT oracle-set, out of s.

Denoting by `f (0) , `g(0) the repetition parameters for the FRI-QUERY phase for f (0), g(0), respectively,
we set them (and s) thus

s = d λ+ 2

n− (10 + 2 log n)
e; `f (0) = d λ+ 2

R+ d
e; `g(0) = dλ+ 2

R
e (19)
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Since the modified protocol follows that of Lemma B.6, completeness and round complexity do not
change. The reduced query complexity allows for a smaller (i.e., better) bound on the knowledge parameter
k. Recalling the analysis in the proof of Lemma B.6, to achieve zero knowledge it suffices to ensure 2k+t−1

is greater than the number of queries to an individual member of w, i.e., greater than

2η ·
(
`f (0) + 3`g(0)

)
= 4 ·

(
d λ+ 2

R+ d
e+ 3dλ+ 2

R
e
)
≤ 16 · dλ+ 2

R
e.

Thus, this inequality holds when k + t > 5 + logdλ+2
R e.

The computation of query and verifier follow directly from the definition of `f (0) , `g(0) above, and gives

q = 2η
(
`f (0) · (w + 3 + k + t + d) + `g(0) · (3w + 3 + k + t + d)

)
= 4 ·

(
d λ+ 2

R+ d
e · (w + 3 + k + t + d) + dλ+ 2

R
e · (3w + 3 + k + t + d)

)
≤ 8dλ+ 2

R
e (2w + 3 + k + t + d)

tvF ≤ 2|B|2 + dλ+ 2

R
e · (16(w + |Φ|+ Tarith (P) + 42 · (k +R+ t + d + 2)))

Prover complexity accounts for the s repetitions of the FRI-COMMIT phase, and is

tpF ≤
(

9w(t + d +R+ 3) + |P|+ w + Tarith (P) + 12d λ+ 2

n− (10 + 2 log n)
e
)
· 2t+d+R+3

Soundness error Under Conjecture B.17, with all but probability errALI = 1/|F| < 2−(λ+2) we have that
either f (0) has distance at least δf (0) = 1 − 2−(R+d) from the code RS[F, L, ρmax], or g(0) has distance at
least δg(0) = 1 − 2−R from RS[F, Lcmp, ρcmp]; both δf (0) , δg(0) are block-wise distances. Assume δg(0) =

1 − 2−R (the case of δf (0) ≥ 1 − ρmax is argued similarly). Fixing ε = 2−10 (somewhat arbitrarily)

and recalling η = 2, Conjecture B.19 implies that with all but probability errCOMMIT = 210·k2
|F| over the

randomness of the verifier during the COMMIT phases, the ensuing QUERY phase, repeated `g(0) times,

accepts with probability at most δ
`
f(0)

f (0)
· δ

`
g(0)

g(0)
. Assuming δg(0) ≥ 1 − 2−R and simplifying notation to

p = errCOMMIT, δ = δg(0) and ` = `g(0) , by the law of conditional probability the error probability is at most

s∑
i=0

(
s

i

)
pi(1)(1− p)i ·

(
i

s
+
δ(s− i)

s

)`
≤

s∑
i=0

(sp)i ·
(
i+ δ(s− i)

s

)`
(20)

We claim that each of the s terms on the right hand side above is bounded by δ`/s, which is equivalent
to claiming

s · (s · p)i ≤
(

δs

i+ (s− i)δ

)`
.

By the assumption δ ∈ [1/2, 1], the base of the exponent on the right hand side is at least 1/2, so it suffices
to show

s · (s · p)i ≤ 2−`
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taking logarithms, it suffices to show i log 1
p − (i+ 1) log s ≥ `, which we shall do even for i = 1. We have

log 1
p ≥ n− (10 + 2 log n) because k ≤ n, and log s ≤ 1 + log λ ≤ log n thus, assuming

n− (12 + 4 log n) ≥ dλ+ 2

R
e

which holds for all n ≥ 60 because n > λ, we conclude that indeed each summand of Equation (20) is
bounded by δ`/s, hence errFRI ≤ δ` ≤ 2−(λ+2). The total error probability of the protocol is thus at most
errALI + errFRI < 2−λ, as claimed. This completes the proof.

B.7.4 Proof of ZK-STIK Theorem 3.5

The proof below follows that of Theorem B.13, with minor modifications in parameters; all are due to the
different starting point — a pair (xBPAIR,wBPAIR) — and the slightly different parameters of the end point
of that particular reduction. We thus point out the parameter settings that differ from those appearing in the
proof of Lemma B.6. Then we argue that asymptotic verifier complexity is strictly logarithmic, and prover
complexity is strictly O(T (n) log2 T (n)).

Proof of Theorem 3.5. The proof follows that of Lemma B.6 with the following different parameter choices:

• In Item 1 of the protocol description in the proof of Lemma B.6, both parties apply the deterministic
reduction of Theorem B.13: Prover executes PBPAIR→APR(xBPAIR,wBPAIR) leading to the witness
wAPR and verifier executes VBPAIR→APR(xBPAIR), leading to xAPR.

• The repetition parameter is set differently than in the proof of Lemma B.6, to account for the fact that
xAPR is 5-overlapping (not 1-overlapping, as above) and thus ζ = 21 (cf. Equation (7)) so δ(0) = δ

42 .
This increases the repetition parameter ` defined in Equation (14) to

` = d λ+ 2

log 1
1− δ

42

e

so that errFRI(δ
(0)) will be bounded by err/4 as stated in Equation (15).

• We also have dim(L) = 2 + k +R + t + dlog (t + 1)e + d, i.e., the dimension of L is greater than
that used in the proof of Lemma B.6 by an additive factor of dlog (t + 1)e.

• Each query to f (0) requires now |T | = 2 (w + 1) + 1 queries to Oassignment (compared with w + 1
in the proof above) and each query to g(0) requires 11|T | = 22 (w + 1) + 11 queries to Oassignment

rather than 3|T | as before.

Query complexity Using these parameters in the computation of query complexity requires increasing
the outer most factor from 36 to 156, to account for the factor 41

3 = 39
9 increase in repetition parameter, and

replacing w with 25w + 36 in (16). This give

q = 156 · (λ+ 2) · (25w + t + d + dlog (t + 1)e+ 38) = O(λ · t).

The last equality uses w = O(t) as stated in Lemma B.9.
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Verifier complexity The arithmetic complexity of the verifier is dominated by the arithmetic complexity
of the FRI verifier and the computation of entries of f (0) and g(0), which should be repeated O(`) = O(λ)
many times. Consequently, and using the bounds on t, d = O(1), |PT∪Pπ|,Tarith (P) = O(log T (n)), and

|B| = O(n)|B|, we conclude verifier arithmetic complexity is O(λ · t) as well.

Prover complexity Asymptotic prover complexity is similar to that discussed in the proof of Lemma B.6,
with two important differences. First, our prover needs to compute a routing on a back-to-back De Bruijn
network, costingO(T (n) log T (n) operations (see Theorem G.3); second, the dimension of L (and of Lcmp)
is larger by an additive factor of dlog (t + 1)e. Therefore, the LDE computations are now over spaces of
size O(T (n) log T (n)) and total arithmetic complexity of the prover is O(T (n) log2 T (n)).

B.8 Realization considerations

Our code realization for the DPM described in Figure 1 (cf. Appendix A) uses the verifier-side parameter
settings of Lemma B.7. The IOP is converted to a transparent argument system with computational zero
knowledge, via the Kilian/Micali cryptographic compiler (cf. Section 2.5). Our code for the prover realizes
both reductions described in Theorems 3.4 and 3.5. Our focus here is on the DPM program that requires
small space, hence the former system is more efficient in this case.

For the hash function used to construct Merkle trees as commitments to oracles, we use the Davies–
Meyer construction instantiated with AES128. This gives an estimated collision resistance parameter of 64
bits.

Using the notation in the proof of Lemma B.7, we setR = 3 and λ = 60, leading to security error of at
most err ≤ 2−60. The binary field we use has |F| = 264, i.e., n = 64. The degree of our constraint system is
8 thus d = 3. We fix the ZK parameter to k = 1; this ensures zero knowledge for t ≥ 8, and this is obtained
for dataset sizes n ≥ 23 because t = dn · 62e. For all smaller datasets, setting k = 3 would suffice for ZK
but since our focus is on large datasets we did not implement this.

The repetition parameter for the number of FRI-COMMIT is s = 2, and for the FRI−QUERY we have
`f (0) = 9 and `g(0) = 22, as follows from Equation (19).
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C Algebraic placement and routing (APR) reduction

In this section we prove Theorems B.12 and B.13, sequentially. The proof of Theorem B.12 starts with
a description of the reduction in Appendix C.1, followed by a proof that it satisfies the conditions and
parameters of Theorem B.12, given in Appendix C.2. Similarly, the proof of Theorem B.13 starts with a
description of the reduction in Appendix C.3, followed by the proof of Theorem B.13 in Appendix C.4.

Notation In this section we view F as F2[g]/h(g) for a primitive polynomial h (see Remark B.1). For
a, b ∈ F viewed as polynomials over F2, the notation a%b represents the remainder of a divided by b in the
ring of polynomials F2[g].

C.1 The APR reduction for space bounded computation

C.1.1 Common definitions

We first start by defining a few objects used in the construction:

• ζ ∈ F2[g] is a primitive polynomial of degree t, notice ζ is a member of F because t < n

• H ⊂ F is the space spanned by
{

gk | 0 ≤ k < t
}

• H0 ⊂ H is the subspace spanned by
{

gk | 0 ≤ k < t− 1
}

• H1 ⊂ H is the affine space H1
4
= H0 + gt−1

• Given an affine space S ⊂ F we define the vanishing polynomial ZS ∈ F[x] to be the monic polyno-
mial of degree |S| such that ∀s ∈ S, ZS(s) = 0

• For every j ∈ [w] we define ZB,j , EB,j ∈ F[x] by ZB,j(x)
4
=
∏

(i,j,α)∈B
(
x−

(
gi%ζ(g)

))
and EB,j is

the polynomial of minimal degree such that for every (i, j, α) ∈ B, EB,j
(
gi%ζ(g)

)
= α

• Given a neighbor (τ,N) ∈ N we denote by (̃τ,N) the expression (̃τ,N)
4
= X(τ,N) ·ZB,τ (N (Xloc))+

EB,τ (N (Xloc)). We extend this notation further more, and denote by ˜(τ1, τ2, . . . , τk, N) the sequence
˜(τ1, N), ˜(τ2, N), . . . ˜(τk, N).

C.1.2 Instance reduction

We now describe the (deterministic) verifier-side reduction VBAIR→APR:

1. T 4= [w]

2. N 4
=
{(
τ,nid) , (τ,ncyc

0

)
,
(
τ,ncyc

1

)
| τ ∈ T

}
where (i) nid (x)

4
= x, (ii) ncyc

b (x)
4
= gx + bζ for

b ∈ {0, 1}.

3. For every j ∈ [w] denote by qj(x, y)
4
= xZB,j (y) + EB,j (y). Define for each P ∈ P the set ΦP by:

ΦP
4
=


Xloc(Xloc−1)
ZH0

(Xloc)
· P
(

˜(
1, . . . ,w,nid

)
, ˜(

1, . . . ,w,ncyc
0

))
,

1
ZH1

(Xloc)
· P
(

˜(
1, . . . ,w,nid

)
, ˜(

1, . . . ,w,ncyc
1

))

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Finally, we define Φ
4
=
⋃
P∈P ΦP

4. DefineL to be the affine spaceL
4
= span

({
g1+k+R+t+d · (1 + g)

}
∪
{

gi | 0 ≤ i < 1 + k +R+ t + d
})

+
g1+k+R+t+d

5. Define Lcmp to be the affine space Lcmp
4
= span

{
gi | 0 ≤ i < k +R+ t + d

}
+ g1+k+R+t+d

6. For every j ∈ [w] define ρj to be ρj
4
=

2k+t−deg(ZB,j)

|L|

7. Define ρcmp
4
= 1+2k+t+d

|Lcmp|

C.1.3 Witness reduction

Finally, we describe the prover-side (randomized) reduction PBAIR→APR, denoting the (input) AIR witness
members by

{
wAIR
j

}
j

and the (output) APR members by
{
w

APR
j

}
j
. We show the construction of wAPR

j

for every j ∈ [w] independently. Draw uniformly random a polynomial Qj : F→ F of degree less than 2k+t

such that for every i ∈ [T] it satisfies Qj
(
gi%ζ

)
= wAIR

j [i]. We define the APR witness by wAPR
j (x)

4
=

Qj(x)−EB,j(x)

ZB,j(x) , for every x ∈ L. Notice this division is well defined, as all the roots of ZB,j are in H by
definition, and H ∩ L = ∅ by construction.

C.2 Proof of Theorem B.12 for space bounded computation

C.2.1 Proof of completeness (Item 1)

Proof. We show that: (i) for all j ∈ [w],wAPR
j ∈ RS[F, L, ρj ], and (ii) ∀φ ∈ Φ, φN

[
ŵ

APR
]
∈ RS[F, Lcmp, ρcmp].

Assignment code membership: For every j ∈ [w], deg
(
Qj − EB,j

)
< 2k+t, and by definition of sat-

isfaction of AIR ZB,j |
(
Qj − EB,j

)
, thus Qj−EB,j

ZB,j
is a polynomial of degree less then 2k+t − deg

(
ZB,j

)
,

showing wAPR
j ∈ RS[F, L, ρj ] as required.

Constraint code membership: We notice first that for any j ∈ [w] and any neighbor (j,N) ∈ N ,

(̃j,N) = Qj ◦ N (denoting by f ◦ g the function (f ◦ g)(x)
4
= f(g(x))) thus it is sufficient to show

that for any P ∈ P both rational functions:

x (x− 1)

ZH0(x)
· P (Q1 (x) , . . . , Qw (x) , Q1 (gx) , . . . , Qw (gx)) (21)

1

ZH1(x)
· P (Q1 (x) , . . . , Qw (x) , Q1 (gx− ζ) , . . . , Qw (gx− ζ)) (22)

are polynomials of degree less than 2k+t+d. We notice it is sufficient to show the denominator indeed
divides the enumerator in each of those rational functions. For that we use the observations: (i) H ={

gi%ζ | 0 < i < T− 1
}
∪ {0, 1}, and (ii) 0, 1 ∈ H0
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For Equation (21) it is sufficient to show that P (elQ1 (x) , . . . , Qw (x) , Q1 (gx) , . . . , Qw (gx)) = 0 for
every gi ∈ H0 \ {0, 1}. The claim follows by the fact that for any gi ∈ H0, we have gi+1%ζ = gi+1, thus
by construction

P
(
Q1

(
gi
)
, . . . , Qw

(
gi
)
, Q1

(
gi+1

)
, . . . , Qw

(
gi+1

))
(23)

= P
(
wAIR

1 [i], . . . , wAIR
w [i], wAIR

1 [i+ 1], . . . , wAIR
w [i+ 1]

)
= 0 (24)

Where the last equation follows by definition of satisfaction in AIR.
For Equation (22) the claim follows similarly, by noticing gx− ζ = gx%ζ for all x ∈ H1.

C.2.2 Proof of soundness (Item 2)

Proof. Assume VBAIR→APR (x, k,R) ∈ APR for x = (F,T,w,P,C,B), and let ŵAPR be a witness for
it. We show x ∈ BAIR by constructing a witness wBAIR for it. We define for every j ∈ [w] the mapping
wBAIR
j : [T]→ F by

wBAIR
j [i]

4
= w

APR
j

(
gi%ζ

)
· ZB,j

(
gi%ζ

)
+ EB,j

(
gi%ζ

)
(25)

denoting by wAPR
j as the low degree extension of the actual witness. We show w

BAIR satisfies x. Denote by

qj(x, y)
4
= x · ZB,j(x) + EB,j(x).

Boundary constraints: w
BAIR satisfies the boundary constraints B by construction, as having (i, j, α) ∈ B

implies ZB,j
(
gi%ζ

)
= 0 and EB,j

(
gi%ζ

)
= α, thus wBAIR

j [i] = α as required.

Consistency with P: We show that for any i ∈ [T− 1] and for any P ∈ P:

P
(
wBAIR

1 [i], . . . , wBAIR
w [i], wBAIR

1 [i+ 1], . . . , wBAIR
w [i+ 1]

)
= 0

Assume this is not the case, thus there is some i and some P ∈ P for which the above does not hold, we show
in such casewAPR can not be a witness of VBAIR→APR (x, k,R). Denote by (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp) =
VBAIR→APR (x, k,R). Assume wAPR

j ∈ RS[F, L, ρj ], and we show ∃φ ∈ Φ such that φN
[
ŵ

APR
]
/∈

RS[F, Lcmp, ρcmp]. Without loss of generality assume gi%ζ ∈ H0 \ {0, 1}, we show the following con-
straint is not a member of RS[F, Lcmp, ρcmp]:

φ (x) =
x (x− 1)

ZH0(x)
· P
(

q1

(
w

APR
1 (x) , x

)
, . . . , qw

(
w

APR
w (x) , x

)
,

q1

(
w

APR
1 (gx) , gx

)
, . . . , qw

(
w

APR
w (gx) , gx

))
Otherwise

φ (x) · ZH0(x) = x (x− 1) · P
(

q1

(
w

APR
1 (x) , x

)
, . . . , qw

(
w

APR
w (x) , x

)
,

q1

(
w

APR
1 (gx) , gx

)
, . . . , qw

(
w

APR
w (gx) , gx

)) (26)

for every x ∈ Lcmp, where both sides, as codewords over Lcmp, are of rate at most

ρcmp +
|H0|
|Lcmp|

≤ 2k+t+d + 2t

2k+R+t+d
≤ 2−R

(
1 + 2−k−d

)
< 1
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But they don’t agree over the entire field F, as for gi%ζ the left hand of the equation vanishes asZH0(gi%ζ) =
0, while the right hand does not vanish as

P

(
q1

(
w

APR
1

(
gi
)
, gi
)
, . . . , qw

(
w

APR
w

(
gi
)
, gi
)
,

q1

(
w

APR
1

(
gi+1

)
, gi+1

)
, . . . , qw

(
w

APR
w

(
gi+1

)
, gi+1

)) = (27)

P
(
wBAIR

1 [i], . . . , wBAIR
w [i], wBAIR

1 [i+ 1], . . . , wBAIR
w [i+ 1]

)
6= 0 (28)

The contradiction follows by showing both sides are polynomials of degree less then ρcmp|Lcmp| + |H0|.
deg (φ · ZH0) is low enough by assumption. We assumed wAPR

j ∈ RS[F, L, ρj ], thus

deg
(
qj

(
w

APR
j (x) , x

))
< 2k+t

thus the right hand of Equation (26) is of degree at most

deg < 2k+t+d + 2 < 2k+t+d + |H0| = ρcmp|Lcmp|+ |H0|

concluding the proof.

C.2.3 Knowledge extraction (Item 3)

Proof. The knowledge extractor is described in Equation (25), and the soundness proof in Appendix C.2.2
shows it is indeed an extractor.

C.2.4 Instance properties (Item 4h)

Arithmetic complexity of Φ: While most of the summands in Item 4c are straightforward, the only non
trivial dependency is the dependency in t. It is a known fact that for every linear space V , the polynomial
ZV vanishing over V is constructible in time poly (dimV ), and has exactly dimV nonzero coefficients,
although its degree is |V |. Moreover, for every constant c ∈ F, the vanishing polynomial over V + c is
exactly ZV+c = ZV + ZV (c). Given all this, we conclude that the values of ZH0 (Xloc) , ZH1 (Xloc) can
be all computed using a single evaluation of ZH0 (Xloc) and addition of a single constant value to compute
ZH1 (Xloc). In total, this single computation requires 3tmultiplications and additions in the field. Additional
optimization is possible when representing ZH0 by a binary matrix, eliminating completely multiplications
over the field from the evaluation process.

xAPR is
(
2−(2+R+d)(1− 2−k)

)
-independent:

Proof. The witness reduction samples each Qj from a
(
2k+t − 2t

)
independent space, so by construction

we notice wAPR
j is sampled from a

(
2k+t − 2t

)
independent space as well. The claim follows by noticing(

2−(2+R+d)(1− 2−k)
)
|L| =

(
2k+t − 2t

)
.

xAPR has
(
1− 2−R

(
1 + 2−d

))
-distance:

Proof. ρcmp ≤ 2−R < 2−R
(
1 + 2−d

)
, and ρmax ≤ 2−(2+R+d) < 2−R

(
1 + 2−d

)
. It is sufficient to show

the existence of the code C from Item 2. We define C to be the set of mappings w : L → F which are

rational functions of the form w(x) = p(x)
q(x) where p(x) is a polynomial of degree less than 2t+d and q(x)

4
=∏

α∈H\{0,1}(x− α). w is well defined over L, as none of the zeros of q(x) are in L, and the distance of the
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code C is the same as the distance of RS
[
F, L, 2t+d

|L|

]
= RS

[
F, L, 2−(2+k+R)

]
, which is 1 − 2−(2+k+R),

and in particular grater than 1 − 2−R
(
1 + 2−d

)
. We conclude the proof by showing RS [F, L, ρmax] ⊂ C

by noticing it is exactly the sub-code where p(x) is restricted to be of the form p(x) = q(x) · v(x), where v
is a polynomial of degree less than 2k+t.

xAPR is 1-overlapping:

Proof. Define the following 3 disjoint affine subspaces of L:

• Sx
4
= Lcmp = span

{
gi | 0 ≤ i < k +R+ t + d

}
+ g1+k+R+t+d

• Sgx
4
= span

{
gi+1 | 0 ≤ i < k +R+ t + d

}
+ g2+k+R+t+d

• Sgx−ζ
4
= span

{
gi+1 | 0 ≤ i < k +R+ t + d

}
+
(
1 + g2+k+R+t+d

)
The claims follows by the observation that for any N(x) ∈ {x, gx, gx− ζ}, and for any z ∈ Lcmp, N(z) ∈
SN(x).

C.3 The APR reduction for general computation

C.3.1 Common definitions

We expand the definition in Appendix C.1.1 (ζ,H). For the sake of completeness we provide those defi-
nitions again, after providing the definitions introduced first in this section. The definitions of ZB,τ , EB,τ
similar to those defined in Appendix C.1.1, providing the same semantic purpose, but syntactically dif-
fer, fitting the construction described in this section. We first start by defining a few objects used in the
construction:

• ξ ∈ F2[g] is a primitive polynomial of degree dlog (t + 1)e, notice ξ is a member of F

• W ⊂ F is the space spanned by
{

gt+k | 0 ≤ k < dlog (t + 1)e
}

– W0 ⊂W is the subspace spanned by
{

gt+k | 0 ≤ k < dlog (t + 1)e − 1
}

– W1 ⊂W is the affine space W1
4
= W0 + gt+dlog(t+1)e−1

– we denote by s the element s
4
= gt+1 ∈W

• Given a neighbor (τ,N) ∈ N we denote by (̃τ,N) the expression (̃τ,N)
4
= X(τ,N) ·ZB,τ (N (Xloc))+

EB,τ (N (Xloc)). We extend this notation further more, and denote by ˜(τ1, τ2, . . . , τk, N) the sequence
˜(τ1, N), ˜(τ2, N), . . . ˜(τk, N).

Definition identical or similar to Appendix C.1.1:

• ζ ∈ F2[g] is a primitive polynomial of degree t, notice ζ is a member of F

• H ⊂ F is the space spanned by
{

gk | 0 ≤ k < t
}

– H0 ⊂ H is the subspace spanned by
{

gk | 0 ≤ k < t− 1
}
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– H1 ⊂ H is the affine space H1
4
= H0 + gt−1

• For every τ ∈ T we define ZB,τ , EB,τ ∈ F[x] by:

– if τ = (j, 0) for j ∈ [w] then ZB,τ (x)
4
=
∏

(i,j,α)∈B
(
x−

(
gi%ζ − s

))
and EB,τ is the polyno-

mial of minimal degree such that for every (i, j, α) ∈ B, EB,τ
((

gi%ζ
)

+ s
)

= α

– otherwise ZB,τ = 1 and EB,τ = 0

C.3.2 Instance reduction

We now describe VBPAIR→APR:

1. T 4= ([w] ∪ {ctrl})× {0, 1}

2. N 4
= NP ∪Nrouting, with NP ,Nrouting defined as follows:

Definition ofNP : NP
4
=
{(
τ,nid) , (τ,ncyc

0

)
,
(
τ,ncyc

1

)
| τ ∈ T

}
where (i) nid (x)

4
= x, (ii) ncyc

b (x)
4
=

g
(
x− gt+1

)
+ bζ + gt+1 for b ∈ {0, 1}.

Definition of Nrouting: Nrouting
4
=
{(
τ,nrout,b

r,c

)
| τ ∈ T ; b, r, c ∈ {0, 1}

}
where nrout,b

r,c (x)
4
= g ·

x+ r · (gt + 1) + c (gt · ξ) + b

3. Φ is defined as Φ
4
= ΦPT

∪ ΦPπ ∪ Φrouting where ΦPT
,ΦPπ ,Φrouting defined as follows:

• ΦPT
definition: Define for every P ∈ PT define

ΦP
4
=


(Xloc−s)(Xloc−s−1)

ZH0+s(Xloc)
· P
(

˜(
(1, 0) , . . . , (w, 0) ,nid

)
, ˜(

(1, 0) , . . . , (w, 0) ,ncyc
0

))
,

1
ZH1+s(Xloc)

· P
(

˜(
(1, 0) , . . . , (w, 0) ,nid

)
, ˜(

(1, 0) , . . . , (w, 0) ,ncyc
1

))


Define ΦPT

4
=
⋃
P∈PT

ΦP .

• ΦPπ definition: Define for every P ∈ Pπ define

ΦP
4
=

{
(Xloc − s) (Xloc − s− 1)

ZH+s(Xloc)
· P
(

˜(
(1, 0) , . . . , (w, 0) ,nid

)
, ˜(

(1, 1) , . . . , (w, 1) ,nid
))}

Define ΦPT

4
=
⋃
P∈PT

ΦP .
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4. Φrouting definition: We define the following polynomials used by out construction:

qeql(x, y)
4
=x− y (29)

qmv(x, y, z)
4
=qeql(x, y)qeql(x, z) (30)

qcp(x, x′, y, y′, z, z′)
4
=qeql(x

′, z′)qeql(x, y) + qeql(x
′, y′)qeql(x, z) (31)

S0,0(x)
4
=
ZH0+span{gt}(x)

ZH0+W0(x)
(32)

S1,0(x)
4
=
ZH1+span{gt}(x)

ZH1+W0(x)
(33)

S0,1(x)
4
=

1

ZH0+W1(x)
(34)

S1,1(x)
4
=

1

ZH1+W1(x)
(35)

and define the control constraints system by:

Φctrl
4
=


1

Xloc−sqeql

(
X((ctrl,0),nid),X((ctrl,1),nid)

)
,

1
ZH+s(Xloc)

qeql

(
X((ctrl,0),nid),Xloc − s

)
,

1
ZH+gt (Xloc)

qeql

(
X((ctrl,0),nid),X((ctrl,1),nid)

)
 (36)

∪
{
Sr,c (Xloc) · qmv

(
X((ctrl,l),nid),X((ctrl,l),nrout,0

r,c ),X((ctrl,l),nrout,1
r,c )

)
| l, r, c ∈ {0, 1}

}
(37)

The network flow copy constraints defined by:

Φcp
4
=


Sr,c (Xloc) qcp


˜(

(i, l) ,nid
)
,X((ctrl,l),nid),

˜(
(i, l) ,nrout,0

r,c

)
,X((ctrl,l),nrout,0

r,c ),

˜(
(i, l) ,nrout,1

r,c

)
,X((ctrl,l),nrout,1

r,c )

 | i ∈ [w]; l, r, c ∈ {0, 1}


(38)

We define Φrouting
4
= Φctrl ∪ Φcp.

5. Define L to be the affine space

L
4
= span

( {
g1+k+R+t+dlog(t+1)e+d · (1 + g)

}
∪{

gi | 0 ≤ i < 1 + k +R+ t + dlog (t + 1)e+ d
})+ g1+k+R+t+dlog(t+1)e+d

6. Define Lcmp to be the affine space

Lcmp
4
= span

{
gi | 0 ≤ i < k +R+ t + dlog (t + 1)e+ d

}
+ g1+k+R+t+dlog(t+1)e+d

7. For every 1 ≤ j ≤ w define ρ(j,0) to be ρ(j,0)
4
=

2k+t+dlog(t+1)e−deg(ZB,j)

|L| ; for any other τ ∈ T we

define ρτ to be 2k+t+dlog(t+1)e

|L| = 2−(2+R+d)

8. Define ρcmp
4
= 1+2k+t+dlog(t+1)e+d

|Lcmp|
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C.3.3 Witness reduction

General overview Let w = (ŵ, π) be the witness. We construct all functions in

wAPR =
(
w(1,0),w(1,1), . . . ,w(w,0),w(w,1),w(ctrl,0),w(ctrl,1)

)
as follows:

1. For every τ ∈ T we define a mapping Qτ : H +W → F

2. For every τ ∈ T we define a mapping Q̃τ : F→ F as the low degree extension of Qτ

3. For every τ ∈ T we draw a random polynomial Rτ : F → F of degree at most 2k+t+dlog(t+1)e

vanishing on H +W and define Q̄τ
4
= Q̃τ +Rτ

4. the function wτ : L→ F is the evaluation of Q̄τ−EBτ
ZBτ

over L

Given the above description, it is sufficient to describe the construction of Qτ for every τ ∈ T .

Construction of Q(ctrl,0), Q(ctrl,1) Given π : [T]→ [T] we define the permutation π′ : F[g]/ζ → F[g]/ζ by:

π′(0) = 0 (39)

∀0 ≤ i < T :π′
(
gi%ζ

)
= gπ(i)%ζ (40)

Q(ctrl,0), Q(ctrl,1) are an affine embedding of back-to-back De Bruijn routing (Appendix G.2) of π′ where
Q(ctrl,0) (x+ s) = x for every x ∈ H .

Construction of Q(i,b) mappings Any other pair Q(i,0), Q(i,1) is intuitively an embedding of the same
permutation π′ as well, and uses exactly the same routing asQ(ctrl,0), Q(ctrl,1). The sole difference is that the
Q(i,0) over H + s is not required to contain only distinct values, but instead satisfies Q(i,0)

((
gj%ζ

)
+ s
)

=
wi[j].

Further optimizations The reduction above can be further optimized for concrete settings in the following
manner, implemented in our ZK-STARK realization. Often, not all w algebraic registers are needed to
verify memory validity; rather, a small number l � w suffices. In this case one may save by routing on the
rearrangeable network only the l needed registers (cf. [90] for more details).

C.4 Proof of Theorem B.13 for general computation

The construction of the reduction from BPAIR to APR (Appendix C.3) is very similar to the construction
of reduction from BAIR to APR (Appendix C), with the main difference of using an embedding of back-to-
back De Bruijn routing (Appendix G.2) to represent the permutation in the BPAIR witness. For the sake of
completeness we provide below a full proof for this construction.

C.4.1 Proof of completeness (Item 1)

Proof. We show that: (i) for all τ ∈ T ,wAPR
τ ∈ RS[F, L, ρτ ], and (ii) ∀φ ∈ Φ, φN

[
ŵ

APR
]
∈ RS[F, Lcmp, ρcmp].
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Assignment code membership: For every τ ∈ T , deg
(
Q̄τ − EB,τ

)
< 2k+t+dlog(t+1)e, and by definition

of satisfaction of BPAIR, we have ZB,τ |
(
Q̄τ − EB,τ

)
, thus Q̄τ−EB,τ

ZB,τ
is a polynomial of degree less then

2k+t+dlog(t+1)e − deg
(
ZB,τ

)
, showing wAPR

τ ∈ RS[F, L, ρτ ] as required.

Constraint code membership: We notice first that for any τ ∈ T and any neighbor (τ,N) ∈ N , (̃τ,N) =
Q̄τ ◦N is of degree less then 2k+t+dlog(t+1)e. It is sufficient to show that every rational function φ ∈ Φ is a
polynomial of degree at most 2k+t+dlog(t+1)e+d. We notice that φ = p

ZS
for some multivariate polynomial

p, and some set S. For simplicity we denote by g ∈ F[x] the low degree extension of pN
[
ŵ

APR
]
. It

is sufficient to show g is (i) of degree less then 2k+t+dlog(t+1)e+d + |S|, and (ii) vanishes over S, thus in
particular dividable by ZS .

The set ΦPT
: for every P ∈ PT denote by

P0 (x)
4
=P

(
Q̄(1,0) ◦ nid (x) , . . . , Q̄(w,0) ◦ nid (x) , Q̄(1,0) ◦ ncyc

0 (x) , . . . , Q̄(w,0) ◦ ncyc
0 (x)

)
(41)

P1 (x)
4
=P

(
Q̄(1,0) ◦ nid (x) , . . . , Q̄(w,0) ◦ nid (x) , Q̄(1,0) ◦ ncyc

1 (x) , . . . , Q̄(w,0) ◦ ncyc
1 (x)

)
(42)

P ′0 (x)
4
=

(x− s) (x− s− 1)

ZH0+s(x)
· P0 (x) (43)

P ′1 (x)
4
=

1

ZH1+s(x)
· P1 (x) (44)

We notice degP0, degP1 < 2k+t+dlog(t+1)e+d, thus it is sufficient to show that whenever the denominator
vanishes, the enumerator vanishes as well. Assume ZH0+s(x) or ZH1+s(x) is zero, then x = y+ s for some
y ∈ H . If y ∈ {0, 1} then x ∈ H0 + s, thus only ZH0+s(x) = 0, and (x− s) (x− s− 1) = 0 as well.
Otherwise, there is some j ∈ [T−1] such that y = gj%ζ, and by the witness construction (Appendix C.3.3)
Q̄(i,0)

((
gj%ζ

)
+ s
)

= wi[j]. In the case
(
gj%ζ

)
+s ∈ H0+s we notice ncyc

0

((
gj%ζ

)
+ s
)

=
(
gj+1%ζ

)
+

s. Similarly, in the case
(
gj%ζ

)
+ s ∈ H1 + s it holds ncyc

1

((
gj%ζ

)
+ s
)

=
(
gj+1%ζ

)
+ s. Fi-

nally, the claim follows by the assumption the BPAIR witness satisfies the instance, and in particular
P (w1[j], . . . , ww[j], w1[j + 1], . . . , ww[j + 1]) = 0 for all j ∈ [T− 1].

The set ΦPπ : Let P ∈ Pπ be a polynomial, denote by

P ′ (x)
4
= P

(
Q̄(1,0) (x) , . . . , Q̄(w,0) (x) , Q̄(1,1) (x) , . . . , Q̄(w,1) (x)

)
(45)

P ′′ (x)
4
=

(x− s) (x− s− 1)

ZH+s(x)
· P0 (x) (46)

We notice degP ′ < 2k+t+dlog(t+1)e+d, thus it is sufficient to show that whenever the denominator vanishes,
the enumerator vanishes as well. Let x be a member of H + s. If x ∈ {s, 1 + s} then (x− s) (x− s− 1) =
0, otherwise there is some j ∈ [T − 1] such that x =

(
gj%ζ

)
+ s, thus by construction P ′ (x) =

P (w1[j], . . . , ww[j], w1[π(j)], . . . , ww[π(j)]), and in particular vanishes by definition of satisfaction in
BPAIR.
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The set Φctrl:

• For φ (x) = 1
ZH+s(x)qeql

(
Q̄(ctrl,0) (x) , x− s

)
we have deg

(
qeql

(
Q̄(ctrl,0) (x) , x− s

))
< 2k+t+dlog(t+1)e

and for every x ∈ H + s, it holds by construction (Appendix C.3) Q̄(ctrl,0) (x) = x− s.

• For φ (x) = 1
x−sqeql

(
Q̄(ctrl,0) (x) , Q̄(ctrl,1) (x)

)
we have deg

(
qeql

(
Q̄(ctrl,0) (x) , Q̄(ctrl,1) (x)

))
<

2k+t+dlog(t+1)e, and Q̄(ctrl,0) (s) = Q̄(ctrl,1) (s) because π′(0) = 0.

• For φ (x) = 1
ZH+gt (x)qeql

(
Q̄(ctrl,0) (x) , Q̄(ctrl,1) (x)

)
we have deg

(
qeql

(
Q̄(ctrl,0) (x) , Q̄(ctrl,1) (x)

))
<

2k+t+dlog(t+1)e, and for every x ∈ H + gt it holds Q̄(ctrl,0) (x) = Q̄(ctrl,1) (x), by the property of the
back-to-back De Bruijn routing (Appendix G.2).

• For φ of the form Sr,c (x) · qmv

(
Q̄(ctrl,l) (x) , Q̄(ctrl,l) ◦ nrout,0

r,c (x) , Q̄(ctrl,l) ◦ nrout,1
r,c (x)

)
. Low degree

follows by the properties of the back-to-back De Bruijn routing (Appendix G.2).

The set Φcp: The low degree of every φ ∈ Φcp follows by construction, as all networks Q̄(j,0), Q̄(j,1) are
routed exactly the same way as the embedded back-to-back De Bruijn routing in Q̄(ctrl,1), Q̄(ctrl,1).

C.4.2 Proof of soundness (Item 2)

Proof. Assume VBPAIR→APR (x, k,R) ∈ APR for x = (F,T,w,P,C,B), and let ŵAPR be a witness for it.
We show x ∈ BPAIR by constructing a witness wBPAIR = (ŵ, π) for it. We define:

• for every j ∈ [w] the mapping wBPAIR
j : [T]→ F by

wBPAIR
j [i]

4
= w

APR
(j,0)

((
gi%ζ

)
+ s
)
· ZB,(j,0)

((
gi%ζ

)
+ s
)

+ EB,j
((

gi%ζ
)

+ s
)

(47)

denoting by wAPR
(j,0) the low degree extension of the actual witness.

• we define
π(i) = j ⇐⇒ w

APR
(ctrl,1)

((
gi%ζ

)
+ s
)

=
(
gj%ζ

)
+ s (48)

for i, j ∈ [T]. Otherwise we say π(i) =∞.

We show w
BPAIR satisfies x. Let Q̄τ (x, y)

4
= x · ZB,τ (y) + EB,τ (y).

Boundary constraints: w
BPAIR satisfies the boundary constraints B by construction, as having (i, j, α) ∈

B implies ZB,(j,0)

((
gi%ζ

)
+ s
)

= 0 and EB,(j,0)

((
gi%ζ

)
+ s
)

= α, thus wBPAIR
j [i] = α as required.

General technique for rest of soundness proof: In what follows we show that in any case where π is
not a permutation, or at least one of PT,Pπ is not satisfied by wBPAIR then there exists φ ∈ Φ such that
φN
[
ŵ

APR
]
/∈ RS[F, Lcmp, ρcmp]. The general method we use is assuming by contradiction φN

[
ŵ

APR
]
∈

RS[F, Lcmp, ρcmp], and denoting by ψ : F → F its low-degree extension. We notice the evaluation of every
such ψ is over Lcmp representable as some rational function, implied by definition of φ, ψ(x) = p(x)

q(x) where

(i) deg p < 2k+t+dlog(t+1)e+d, (ii) deg q < 2t+dlog(t+1)e, and (iii) there exists some x0 such that q(x0) = 0
while p(x0) 6= 0. In particular it must hold q(x)ψ(x) = p(x) for all x ∈ Lcmp, but both equation sides are
polynomial of degree less than 2k+t+dlog(t+1)e+d + 2t+dlog(t+1)e < |Lcmp| that do not agree on x0, thus they
can not agree on any set of size |Lcmp|, contradicting their agreement over Lcmp.
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Satisfaction ofPT: Assume by contradiction there isP ∈ PT and j ∈ [T−1] such thatP (w[j], w[j + 1]) 6=
0. In case gj%ζ ∈ H0 the contradiction is achieved using P ′0 ∈ ΦPT

(Equation (43)), otherwise gj%ζ ∈ H1

and the contradiction is achieved using P ′1 ∈ ΦPT
(Equation (44)).

π is a permutation: By Theorem G.5 it is sufficient to show Q̄(ctrl,0), Q̄(ctrl,0) is an affine embedding
of a back-to-back De Bruijn of degree t inducing a permutation π′ such that (i) the domain of π′ is H ,
(ii) π′(0) = 0. By Definition G.4 it is sufficient to show:

1. For all x ∈ L it holds Q̄(ctrl,0) (x+ s) = x

2. For all x ∈ L it holds Q̄(ctrl,0) (x+ gt) = Q̄(ctrl,1) (x+ gt)

3. For every r, c, l ∈ {0, 1}, and every x ∈ Hr+(Wc \ {0, gt}), Q̄(ctrl,l) (x) equals to Q̄(ctrl,l)◦n
rout,b
r,c (x)

for some b ∈ {0, 1}

4. Q̄(ctrl,0) (s) = Q̄(ctrl,1) (s)

We now now, using the general technique (Appendix C.4.2), that if any of the stated above constraints
does not hold there is φ ∈ Φ such that φN

[
ŵ

APR
]
/∈ RS[F, Lcmp, ρcmp] by providing polynomials p, q ∈

F[x] as required by the technique.

1. In case Item 1 does not hold, the contradiction is achieved using
qeql

(
X((ctrl,0),nid),Xloc−s

)
ZH+s(Xloc)

∈ Φctrl

2. In case Item 2 does not hold, the contradiction is achieved using
qeql

(
X((ctrl,0),nid),X((ctrl,1),nid)

)
ZH+gt (Xloc)

∈ Φctrl

3. In case Item 3 does not hold, the contradiction is achieved using the corresponding polynomial of the
form Sr,c (Xloc) · qmv

(
X((ctrl,l),nid),X((ctrl,l),nrout,0

r,c ),X((ctrl,l),nrout,1
r,c )

)
∈ Φctrl

4. In case Item 4 does not hold, the contradiction is achieved using
qeql

(
X((ctrl,0),nid),X((ctrl,1),nid)

)
Xloc−s ∈ Φctrl

Satisfaction of Pπ: For every j ∈ [w], we notice the pair Q̄(j,0), Q̄(j,1) is routed exactly the same as
Q̄(ctrl,0), Q̄(ctrl,1), as otherwise a contradiction is achievable using Φcp. Thus we conclude Q̄(ctrl,0)

((
gi%ζ

)
+ s
)

=

Q̄(ctrl,1)

((
gπ(i)%ζ

)
+ s
)

for every i ∈ [T − 1]. Assuming there is P ∈ Pπ and i ∈ [T − 1] such that
P (w[i], w[π(i)]) 6= 0, then the contradiction is achieved using the corresponding polynomial in ΦPπ .

C.4.3 Knowledge extraction (Item 3)

Proof. The knowledge extractor is described in Equation (47) and Equation (48), and the soundness proof
in Appendix C.4.2 shows it is indeed an extractor.

C.4.4 Instance properties (Item 4h)

The proof of Item 4h is mostly strait forward, and very similar to the proof of Item 4h in Appendix C.2.4.
We provide a full proof only to it being 5-overlapping.
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xAPR is 5-overlapping:

Proof. Define the following 3 disjoint affine subspaces of L:

• Sx
4
= Lcmp = span

{
gi | 0 ≤ i < k +R+ t + d

}
+ g1+k+R+t+d

• Sgx
4
= span

{
gi+1 | 0 ≤ i < k +R+ t + d

}
+ g2+k+R+t+d

• Sgx+1
4
= span

{
gi+1 | 0 ≤ i < k +R+ t + d

}
+
(
1 + g2+k+R+t+d

)
We show there are at most 5 neighbor to each space, mapping elements of Lcmp to them. We notice that
for every x ∈ Lcmp: (i) nid (x) ∈ Sx, (ii) ncyc

0 (x) ,nrout,b
r,c (x) ∈ Sgx whenever b + r + c = 0, and

(iii) ncyc
1 (x) ,nrout,b

r,c (x) ∈ Sgx+1 whenever b+ r + c = 1. Concluding our proof.

D Algebraic linking IOP (ALI)

In this section we describe the second part of the reduction described in Appendix B (see Figure 8), namely,
the ALI protocol. This protocol receives a pair (xAPR,wAPR) as described in Appendix B.3 and Defini-
tion B.10, uses a single round of interaction in which the verifier sends public randomness, and ends with a
pair of instances of the RS proximity testing problem from Definition B.14.

The ALI protocol is described in Appendix D.1. The main properties achieved by it were presented
earlier in Theorem B.15, and we prove this Theorem in Appendix D.2. The section ends in Appendix D.3
with a justification for Conjectures B.16 and B.17 that suggest better soundness (and smaller query and
verifier complexity) for the ALI protocol.

D.1 The Algebraic Linking IOP (ALI) protocol

The protocol below is a generalization of the “duplex PCP” 2-round IOP protocol from [17, Section 6.2] to
the case of κ-independent APR instances. There, the verifier sent randomness to reach a random linear com-
bination of the assignment and a “mask” polynomial. Since we have numerous assignments and constraints,
the verifier adds randomness to check a random linear combination of all assignments and another random
linear combination to check all constraints. The end result of this is that even though the APR witness has
many algebraic registers, and a single codeword per register, totaling |T | + 1 many RS-codewords, at the
end of the ALI protocol we need to test proximity only for a pair of purported RS codewords.

ALI protocol
Input:

• Verifier has a κ-independent instance x = xAPR = (F, T ,N ,Φ, L, Lcmp, ~ρ, ρcmp)

• Prover has x and a witness w = wAPR = {wτ ∈ Vτ , τ ∈ T } satisfying x, where each wτ was
sampled uniformly from the κ|L|-independent space Vτ described in Definition B.11.

Protocol:

1. Prover samples uniformly and independently random

• fmask ∈ RS [F, L, ρmax];

• gmask ∈ RS [F, Lcmp, ρcmp];
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and sends to verifier the oracle Oassignment
4
= (w, fmask, gmask)

2. Verifier performs the following:

(a) sample and send to prover a sequence R of 2|T |+ |Φ| uniformly random F-elements containing:

• rτ,0, rτ,1 for every τ ∈ T
• rφ for every φ ∈ Φ

(b) define the random constraint φR : FV → F by φR (α)
4
=
∑
φ∈Φ rφ · φ (α)

(c) invoke the two following RS-IOPP sub-protocols, accepting if and only if both sub-protocols accept:

i. verify proximity of the function f (0) : L→ F to the code RS[F, L, ρmax] where

∀x ∈ L, f (0)(x)
4
= fmask(x) +

∑
τ∈T

(
rγτ,0 + rγτ,1 · x|L|·(ρmax−ρτ )

)
·wτ (x) (49)

ii. verify proximity of the function g(0) : Lcmp → F to the code RS[F, Lcmp, ρcmp] where

∀x ∈ Lcmp, g(0)(x)
4
= gmask(x) + φR (αw,N (x)) (50)

D.2 Proof of the ALI reduction Theorem B.15

Our proof follows the order of items stated in Theorem B.15. As typical for IP and PCP statements, the
most intricate parts of our proof are those dealing with soundness, and, to a lesser extent, those discussing
zero knowledge and knowledge extraction.

D.2.1 Completeness — Part 2

Suppose ŵ satisfies x according to Definition B.10. Then by definition of a κ-independent APR, the (ran-
dom) witness w sampled by the prover in step 1 of the ALI satisfies x as well. This means that the following
holds:

• wτ ∈ RS [F, L, ρτ ] for each τ ∈ T and f (0) is in the linear span of w; thus f (0) ∈ RS [F, L, ρmax].

• φN [w] ∈ RS[F, Lcmp, ρcmp] for each φ ∈ Φ and φR is in the linear span of {φN [w]}, thus φR ∈
RS[F, Lcmp, ρcmp] as well, concluding g(0) ∈ RS[F, Lcmp, ρcmp].

Therefore, the completeness of the RS-IOPP used in step 2c of the ALI, implies that our verifier accepts
the proof above with probability 1, i.e., the ALI protocol has perfect completeness.

D.2.2 Soundness — Part 3

Our proof of soundness requires a few preliminary statements, stated next. The proof of soundness follows
in the next sub-section.

Preliminaries The following claim discusses interpolants, using the definition and notation from Ap-
pendix B.1.

Claim D.1. Let S ⊆ F and d, k ∈ N satisfy d + 2k < |S|. Given f : S → F define f̂(x)
4
= xk · f(x).

Suppose that both deg
(
interpolantf

)
< d + k and deg

(
interpolantf̂

)
< d + k. Then we also have

deg
(
interpolantf

)
< d.
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Proof. Let P (X) = interpolantf and let Q(X)
4
= Xk · P (X); both P,Q are viewed as members of F[X].

By assumption deg(P ) < d + k, so deg(Q) < d + 2k < |S|. The multi-point evaluation of Q on domain
S is precisely the function f̂ . The uniqueness of the interpolant, along with the observation deg(Q) < |S|,
imply that interpolantf̂ = Q. Therefore, the assumption deg(interpolantf̂ ) < d+ k gives deg(Q) < d+ k.
By construction deg(P ) = deg(Q)− k and this completes the proof.

The next lemma says that linear spaces whose members are “close on average” to a linear error correcting
code, have small support.

Lemma D.2 (Proximity to codes implies small support). Let C ⊂ FS be an F-linear code of blocklength
≤ |F| and relative distance δ. Fix c > 6/δ. Suppose V ⊂ FS satisfies

Pr
v∈span(V )

[
∆H (v, C) ≤ 1

c

]
> 1/|F|.

Then there exists S′ ⊂ S of density µ(S′/S) ≥ 1− 2
c > 1− δ

3 such that V |S′ ⊆ C|S′ .
The proof of the lemma above requires a result from [95] (stated as Lemma 1.6 there). We recall and

prove that lemma next, then prove Lemma D.2.

Lemma D.3 (Average distance amplification). Let C ⊂ FS be a linear space. If f1, . . . , fk ∈ FS are such
that there exists fi that is ε-far from C in relative Hamming distance, then

Pr
r1,...,rk∈F

[
∆H

(
k∑
i=1

rifi, C

)
≤ ε/2

]
≤ 1/|F|

Proof of Lemma D.2. By Lemma D.3 we have

∀v ∈ span(V ), ∆H (v, C) ≤ 2

c
. (51)

Since 2/c < δ/2 by assumption, we conclude that the codeword of C that is closest to v ∈ span(V ) is

unique, denote it by v̄. Define Sv
4
= {x ∈ S | v(x) 6= v̄(x)} and for V ′ ⊆ span(V ) let SV ′ = ∪v∈V ′Sv. To

prove Lemma D.2 it suffices to show

µ
(
Sspan(V )/S

)
≤ 2

c
(52)

by setting S′ = S \ Sspan(V ).
We prove (52) by way of contradiction, namely, we show that µ(Sspan(V )/S) > 2

c and (51) together
imply that (51) is false, so (52) holds.

Write v = v̄ + v′ where v′ has relative Hamming weight µ(Sv′/S). Abusing notation, we identify v
with v′ and henceforth assume the codeword closest to v is 0 and that Sv denotes the support of v, i.e., the
set of its nonzero entries.

Since (51) implies µ(Sv/S) < δ/3, if (52) is false then there exists some V ′ ⊂ V such that

µ (SV ′/S) ∈
(

2

c
,
4

c

)
⊆
(

2

c
, δ − 2

c

)
The containment follows because 4/c < 2δ/3 < δ − 2/c. By linearity of expectation, the expected
support size of a random word in span(V ′) is precisely (1 − 1/|F|)|SV ′ | which is strictly greater than
(1 − 1/|SV ′ |)|SV ′ | because |SV ′ | < |S| ≤ |F|. Thus, it must be the case that some v ∈ span(V ′) is fully
supported on SV ′ which means that the relative support size of v is in

(
2
c , δ −

2
c

)
; we conclude v has relative

distance µ(SV ′/S) > 2/c from C, contradicting (51) and completing the proof.
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Soundness analysis

Proof of Item 3 of Theorem B.15. We prove the contrapositive: If neither item 3a nor item 3b of Theo-
rem B.15 hold, which means both of the following items hold:

1. Pr
[
∆H

(
f (0),RS [F, L, ρmax]

)
≤ δ

2ζ

]
> 1/|F|

2. Pr
[
∆H

(
g(0),RS [F, Lcmp, ρcmp]

)
≤ δ

2ζ

]
> 1/|F|

Then x ∈ APR. Details follow.
We apply Lemma D.2 to Item 1 above, while setting the constant c in that lemma to

c
4
=

2ζ

δ
(53)

The assumptions of Lemma D.2 hold because ζ > 3 (cf. Equation (7)) and δ ≤ 1−ρmax, hence c > 6/(1−
ρmax) as required by Lemma D.2. By that lemma we deduce the existence of a set S ⊂ L, µ (S/L) ≤ 2

c
such that for all τ ∈ T we have both

wτ |L\S ∈ RS[F, L, ρmax]|L\S and
(
x|L|·(ρmax−ρτ ) ·wτ

)
|L\S ∈ RS[F, L, ρmax]|L\S . (54)

Let d = deg
(
wτ |L\S

)
< ρmax · |L| and k = |L| · (ρmax − ρτ ). We have

d+ 2k < |L|(ρmax + 2(ρmax − ρτ )) < |L| · 3ρmax < |L \ S|.

The last inequality follows from ρmax ≤ 1/4 and |S| ≤ 2/c ≤ 1/4 (see Equations (7) and (53)). So by
Claim D.1 we conclude

∀τ ∈ T wτ |L\S ∈ RS[F, L, ρτ ]|L\S . (55)

Let H0 = {x ∈ Lcmp | N (x) ∩ S 6= ∅}; a union bound gives |H0| ≤ Θ|S|. Let w′τ be the low degree
extension of wτ |L\S to domain L, noticing w′τ ∈ RS[F, L, ρτ ]. Let w′ = {wτ | τ ∈ T }. Recall the assump-
tion that x has δ-distance, and let C be the linear code of minimal distance δ that contains RS[F, Lcmp, ρcmp]
as required by Item 2). By Equation (55) and Item 2 we conclude φN [w′] ∈ C for each φ ∈ Φ. Thus, to
complete our soundness analysis, we need only show that φN [w′] ∈ RS[F, Lcmp, ρcmp] for each φ ∈ Φ.

Consider the set of functions {
φN
[
w
′] | φ ∈ Φ

}
∪ {gmask}

and let V denote the linear span of this set. Since, by assumption, φN [w′] agrees with φN [w] on Lcmp \H0,
we conclude that g(0)|Lcmp\H0

∈ VLcmp\H0
. Therefore, if there exists even one member of {φN [w′] | φ ∈ Φ}

that does not belong to RS[F, Lcmp, ρcmp], then Lemma D.3 implies

Pr

[
∆H

(
g(0),RS[F, Lcmp, ρcmp]

)
≤ 1

2
· (δ − µ(H0/Lcmp))

]
≤ 1/|F|

which contradicts Item 2 stated at the beginning of this proof, because δ
2ζ ≤

1
2 (δ − µ (H0/Lcmp)) by our

choice of ζ in Equation (7). Therefore we conclude that

∀φ ∈ Φ, φN
[
w
′] ∈ RS[F, Lcmp, ρcmp] (56)

and hence w′ satisfies x, completing the soundness analysis.

Remark D.4 (Potential for improvement of soundness analysis). The ×2ζ loss in soundness, compared to
distance δ, is due to two factors. Lemma D.3 “costs” a ×2 factor, and the union bound used in the proof
above incurs another×

(
1 + Θ |L|

|Lcmp|

)
loss. It remains an interesting open problem to decide if either factor

is actually required (cf. Conjectures B.16 and B.17).
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D.2.3 Knowledge Extraction — Part 4

The proof of Item 4 of Theorem B.15 relies on the following lemma. After proving it, we complete the proof
of knowledge extraction. Recall we assume x has δ-distance.

Lemma D.5. Suppose there exists L′cmp ⊆ Lcmp such that all of the following hold:

1. • µ
(
L′cmp/Lcmp

)
> 1− δ

• φN [w] |L′cmp
∈ RS[F, Lcmp, ρcmp]|L′cmp

for every φ ∈ Φ

2. For L′ := N (L′cmp) and each τ ∈ T :

• µ (L′/L) ≥ √ρτ
• wτ |L′ ∈ RS[F, L, ρτ ]|L′

Then x ∈ APR and the assignment w′ := {w′τ | τ ∈ T } where w′τ is the low-degree extension of wτ |L′ to
L witnesses x ∈ APR.

Proof. By definition of w′ and by assumption 2 we conclude w′τ ∈ RS[F, L, ρτ ] for all τ ∈ T . By as-
sumption 1 we know there is some codeword w ∈ RS[F, Lcmp, ρcmp] that is within distance δ of φN [w′],
while φN [w′] is a codeword of C having relative distance at least δ, as x is a δ-distance instance, thus
φN [w′] ∈ RS[F, L, ρτ ]. Finally we conclude (x,w′) ∈ RAPR by definition of RAPR.

Lemma D.6. There exists a Las Vegas (randomized) polynomial time algorithm E that satisfies the following
condition. Given as input a δ-distance instance x with ρmax ≤ 1/4 and w ⊂ (FL)T for which there exists
L′cmp that satisfies the assumptions of Lemma D.5 with respect to x and w, the output of E on input (x,w)

is a witness w′ ⊂ (FL)T that satisfies x.

Proof of Theorem B.15, Part 4. As argued in the proof of soundness above (and using the notation there), if
neither item 3a nor item 3b of Theorem B.15 hold, then Equation (55) holds, and moreover, the low degree
extension w′ of w|τ |L\S (for S defined there) is a satisfying assignment. Thus, our extractor will find this
w
′ (with high probability), using the polynomial time Guruswami-Sudan (GS) list-decoding algorithm [65].

Recall that for RS[F, S, ρ], |S| = n and f : S → F, the GS algorithm runs in time poly(n) and outputs a
list Lf ⊂ RS[F, S, ρ], |Lf | = poly(n) that contains every codeword that agrees with f on more than a

√
ρ-

fraction of entries. In other words, when given f : L→ F that agrees with some codeword w ∈ RS[F, L, ρ]
on more than a

√
ρ-fraction of entries, the GS algorithm will return w as part of Lf .

Notice that in our case, the assumption ρmax ≤ 1/4 along with the upper bound |S| ≤ |L|/4, which
follows from Equations (7) and (53), implies that the set of inputs on which w ∈ w and w′ ∈ w′ is of size at
least

√
ρτ . We apply the following extractor.

E(x,w)

1. Sample uniformly random ~a ∈ FT and compute f : L→ F by f(x)
4
=
∑

τ∈T aτwτ (x)

2. Let Lf be the output of the GS list-decoding algorithm on f .

3. For each g ∈ Lf ,

(a) let Sg = {x ∈ Lcmp | ∀ (τ,N) ∈ N , f(N(x)) = g(N(x))};
(b) let w′ = {w′τ}τ∈T where w′τ is the low-degree extension of wτ |N (Sg);
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(c) if w′ satisfies x then output w′ and return “success”

4. return “fail”

Clearly E runs in polynomial time in its input because |Lf | = poly(|L|). Additionally, it is a one-sided
error algorithm because if it returns “success” then w′ indeed satisfies x. Thus it only remains to analyze
the probability of failure, given by the following claim.

Claim D.7. Suppose L′cmp satisfies all properties of Lemma D.5 and is of maximal size with respect to
property 2 of that Lemma. Then

Pr
~a

[
∃g ∈ Lf , Sg = L′cmp

]
≥ 1− |Lcmp|δ

|F|
. (57)

Assuming the claim, when examining g ∈ Lf with Sg = L′cmp we have wτ |N (Sg) ∈ RS[F, L, ρτ ]|N (Sg)

for any τ ∈ T by assumption and the low degree extension w′τ of wτ |N (Sg) witnesses x ∈ APR. This
completes the proof of Lemma D.6 but for the proof of Claim D.7, which appears next.

Proof of Claim D.7. The assumption that L′cmp is maximal with respect to property 2 of Lemma D.5 means
that for each α ∈ Lcmp \ L′cmp there exists βα ∈ N (α) and some τα ∈ T such that wτα(βα) does not agree
with the low-degree extension of wτα |N (L′cmp) that we shall denote by w′τα . Let eτα : L → F be the “error
function” related to w′τα , defined as eτα(x) = w′τα(x)− wτα(x). We have

Pr
~a

[
f(βα) =

∑
τ∈T

aτw
′
τ (βα)

]
= Pr

~a

[∑
τ∈T

aτeτ (βα) = 0

]
=

1

|F|

the last equality holds because by assumption eτα(βα) 6= 0. Applying a union bound to α ∈ Lcmp \ L′cmp

we conclude that (57) holds with probability at least 1− |Lcmp|−|L′cmp|
|F| ≥ 1− |Lcmp|δ

|F| , and this completes the
proof.

D.2.4 Perfect Zero-Knowledge — Part 5

Our proof follows [17, Section 6] but we make the simplifying assumption that the verifier’s first message is
the sequence of randomness R mentioned in Step 2a (see Remark D.8). The ALI protocol assumes two RS-
IOPP systems, used in steps 2(c)i and 2(c)ii there, each with its own prover and verifier, let Pf ,Pg denote
the two provers, respectively. Our STIK (and STARK) instantiates both Pf ,Pg to be the FRI prover (for
different RS code parameters) but our proof of zero knowledge works for any choice of RS-IOPP because
our simulator uses the relevant RS-IOPP prover(s) in a black-box manner. We assume messages from the
verifier have a canonical format that indicates which RS-IOPP prover is being addressed, and which oracle
is being queried among Oassignment and the various oracles produced by the pair of RS-IOPP protocols.

The simulator Our straight-line PZK simulator is denoted Sim. Given a verifier V∗ and instance x, the
simulator starts by sampling uniformly random functions f (0) ∈ RS[F, L, ρmax] and g(0) ∈ RS[F, Lcmp, ρcmp]
and recording them. The simulator also instantiates the two RS-IOPP provers — Pf and Pg corresponding
to steps Item 2(c)i, Item 2(c)ii of the ALI protocol — with f (0) and g(0), respectively. It also invokes V∗ and
records the first message, which is the randomness R provided by V∗. The simulator now continues to run
V∗. All messages and queries directed by V∗ to one of the two RS-IOPP protocols (dealing with f (0) and
g(0)) are managed by Sim by invoking the corresponding IOPP prover(s) Pf ,Pg.
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To complete the description of Sim we need only explain how it answers queries to Oassignment =
(w, fmask, gmask). Recall that w is a collection of functions, each with domain L, and this is also the do-
main of fmask; the domain of gmask is Lcmp. As in [17, Section 6], Sim maintains a set of partial functions
w
∗, f∗mask, g

∗
mask (with the same domains as w, fmask, gmask); all these functions are initialized with ∗ val-

ues that indicate “undetermined”. When a function in Oassignment is queried, Sim answers with the value
recorded in w∗, f∗mask, g

∗
mask, if determined, and will otherwise determine it, i.e., change its value from ∗ to

some element of F. The process by which undetermined values get determined is described next:

1. A query x0 ∈ L sent to a function f ∈ w ∪ {fmask}, is determined jointly for all functions f ′ ∈
w ∪ {fmask}. Consider Equation (49). The term on the left hand side, f (0)(x0), is already fixed by
Sim. On the right hand side, the terms{

rγτ,0 + rγτ,1 · x
|L|·(ρmax−ρτ )
0 | τ ∈ T

}
(58)

are all fixed. The only undetermined values are those of f∗mask(x0) and {w∗τ (x0) | τ ∈ T }. Thus,
our simulator determines these undetermined values by sampling a uniformly random solution to the
linear constraint imposed by f (0)(x0) and Equation (58).

2. A query y0 ∈ Lcmp, sent to the function gmask, is determined thus. The left hand side of Equa-
tion (50) is already determined by Sim. For all x0 ∈ N (y0), our simulator determines the value of all
{w∗τ (x0) | τ ∈ T } and f∗mask(x0) using the process described in Item 1. After all such values w∗τ (x0)
are determined for x0 ∈ N (y0), notice that the rightmost summand of Equation (50) is also deter-
mined. Thus, Sim determines g∗mask(y0) to be the unique field element that causes the linear constraint
of Equation (50) to be satisfied.

Perfect zero knowledge First, notice Sim is straight-line, i.e., it never restarts V∗. To prove perfect zero
knowledge, we shall show that the distribution sampled by Sim interacting with V∗ on a satisfiable instance
x, is the same as the distribution on transcripts of the interaction between V∗ and an honest prover holding
a witness for x and operating as described in ALI. Notice the following facts about the distribution supplied
by the honest prover:

1. Each wτ is sampled uniformly and independently from a κ|L|-wise independent space;

2. φR (αw,N (y0)) is determined by R and {wτ (x0) | x0 ∈ N (y0), τ ∈ T };

3. the pair (fmask, gmask) is sampled uniformly from RS[F, L, ρmax]× RS[F, Lcmp, ρcmp];

4. consequently, independently ofR andw, the pair (f (0), g(0)) is sampled uniformly from RS[F, L, ρmax]×
RS[F, Lcmp, ρcmp]

Item 4 above relies on the completeness property, which says that if w satisfies x then the rightmost sum-
mand of Equation (50) is a codeword of RS[F, Lcmp, ρcmp].

Consequently, for every fixing of the first verifier message R, and for every subset S ⊂ L, |S| <
κ|L|, the distribution on w|S , fmask|S , f (0)|S generated by the honest ALI prover is the uniform distribution
on field elements satisfying the linear constraint of Equation (49) for each x ∈ S. By construction, the
distribution supplied by Sim invoking V∗ which makes these queries S, is precisely the same distribution.

Next, assume the aforementioned S includes all x0 ∈ N (S′), where S′ ⊂ Lcmp is the set of queries
made by V∗ to gmask. By Item 2, the distribution on the rightmost term of Equation (50) generated by the
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honest ALI prover is the exact same distribution as that supplied by Sim invoking V∗. By Items 3 and 4
above, the distribution on g(0)|S′ , gmask|S′ is thus the uniform distribution on field elements satisfying the
linear constraint of Equation (50) for every y0 ∈ S′. By construction, Sim produces the same distribution
on g(0)|S′ , gmask|S′ .

Finally, the distribution of messages between V∗ and the sub-provers P1,P2 used as part of the RS-
IOPP protocols are, by construction, the same distribution as provided by Sim invoking V∗ because both
the honest ALI prover and the simulator invoke the same sub-provers P1,P2 and supply them with the exact
same uniformly random inputs f (0) and g(0).

We have shown that the distribution output by the straight-line simulator Sim invoking V∗ is equal to
the distribution output by V∗ interacting with an honest prover on a satisfiable instance. This completes the
proof of Item 5 of Theorem B.15.

Remark D.8. Inspection reveals that the proof of perfect zero knowledge appearing in [17, Section 6] can
be adapted to our case (details omitted). That proof is more complicated, as it is designed to address the case
where the verifier may query the first oracle (Oassignment) even before sending the randomness R. We point
out that in all concrete STARK realizations — both interactive (iSTARK) and non-interactive (nSTARK)
— this assumption is unrealistic.

D.2.5 Arithmetic complexity — Part 6

In this section we prove Item 6 of Theorem B.15. Verifier complexity is as stated because the verifier’s only
action during the ALI protocol is to sample the randomness R. Regarding prover complexity, we follow the
steps of the protocol:

1. In step 1 the prover samples random functions w, fmask, gmask. For each member of w this requires
3 · |L| log |L| arithmetic operations, as stated in Item 4h of Theorem B.12, and Theorem B.2.

2. In the beginning of Item 2(c)i the prover computes f (0), by performing point wise computation using
Equation (49), at a cost of 2|L||T | multiplications, and 2|L| (|T |+ 1) additions over F. The total
arithmetic complexity of this part is less than 5|T | · |L|.

3. In step 2(c)ii the prover computes g(0) and (its proximity proof is discussed later), by performing
a complete point wise computation using |Lcmp| · (Tarith (Φ) + |Φ|) multiplications, and |Lcmp| ·
(Tarith (Φ) + |Φ|+ 1) additions over F. This accounts for the rightmost summand of Equation (8).

Summing up, the total cost is as stated in Equation (8), and this completes our complexity analysis for the
ALI protocol.

D.3 Conjectured soundness

In this section we discuss the rationale behind Conjectures B.16 and B.17, starting with the latter one.

Pure pseudo-prover Informally, Conjecture B.16 captures the intuition that pure pseudo-provers achieve
the largest soundness-error against general instances. A pure pseudo-prover is one that generates pure
pseudo-assignments O∗assignment = (w∗, f∗mask, g

∗
mask); a pure pseudo-assignment satisfies

span (w∗, f∗mask) ⊆ RS[F, L, ρmax]
∨

span ({φ(αw∗,N ) | φ ∈ Φ} , g∗mask) ⊆ RS[F, Lcmp, ρcmp].
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In words, a pure pseudo-assignment selects O∗assignment such that either eachw∗τ is a codeword of the relevant
code RS[F, L, ρτ ], in which case the resulting constraint polynomials will be, with very high probability,
maximally far from RS[F, Lcmp, ρcmp], or else P∗ fixes the intended values of each φ ∈ Φ to correspond to
a member gφ ∈ RS[F, Lcmp, ρcmp] and then find, for each y ∈ Lcmp, a setting for the values of w(N (y)) so
that φ(αw∗,N )(y) = gφ(y); in this case, the resulting w will likely be maximally far from RS[F, L, ρmax].

Mixed pseudo-prover The “attack” imagined to support Conjecture B.17 is the following: on input x, the
pseudo-prover starts with somew∗ ⊆ RS[F, L, ρmax], which leads to {φ(αw∗,N ) | φ ∈ Φ} being maximally
far from RS[F, Lcmp, ρcmp]. Next, for some ε fraction of the entries of Lcmp, the attacker “reverse-engineers”
a change to an ε-fraction of the entries of w∗ as to make each member of {φ(αw∗,N ) | φ ∈ Φ} ε-closer to
low-degree. Assuming the spaces L0, L

′
0 are good for x, as we do in Conjecture B.17, this modification

“ruins” an ε · 2η |Lcmp|
L -fraction of the entries of w∗, as expressed by Equation (9). We stress that we do not

know how to efficiently instantiate this attack for general APR instances because the “reverse-engineering”
step above may be hard to solve on general instances.

E An algebraic intermediate representation of the DNA profile match

Let us describe the algebraic intermediate representation (abbrev. AIR, see Section 2.2) of the DNA profile
match (DPM) program, that uses the Rijndael-160 based hash function. This exposition will show how we
achieve the quantities that are specified in Tables 4 and 5 (i.e., the width w, the cycles c, etc.), by providing
a “bottom up” description of our algebraic construction.

We first recount the Rijndael block cipher, but from an algebraic perspective (Appendix E.1). We then
explain our AIR constraints for the Rijndael cipher (Appendices E.2 and E.3). Following that, we describe
the AIR for the transformation from a block cipher to a cryptographic hash function (Appendix E.4). Finally,
we show our to implement the AIR of the logic of the DPM program, that performs an exhaustive search to
compare the loci pairs that are stored in the elements of a hashchain (Appendix E.5).

The Advanced Encryption Standard (AES) instantiates Rijndael with 128-bit block size and 128-bit,
192-bit, or 256-bit key sizes. We denote by Rijndael-160 the cipher with 160-bit block size and 160-bit
key size, and hence output (cipher-text) size of 160 bits. Assuming that Rijndael-160 is an ideal cipher (cf.
Appendix E.4), it can be used to build a collision-resistant hash function (CRHF) with an 80-bit security
parameter.

It should be noted that Rijndael with 192-bit (256-bit) block and key sizes can be used to build CRHF
with a security parameter of 96 bits (128 bits), and that these stronger parameters entail a rather mild over-
head in our algebraic construction (see Table 4). However, the STARK construction that we benchmark
has 60 bits of security, and therefore the stronger hash functions will not provide better security with our
benchmarked system.

Our reference code will be available at https://github.com/elibensasson/STARK.

Notation. Let g denote a primitive element of F264 , i.e., 〈g〉 = F∗264 . We assume throughout that field
elements are represented according to a standard basis (1, g, g2, g3, . . . , g63), rather than a normal basis. We
denote by R(t) ∈ F264 the content of the algebraic register R at cycle t of the execution (e.g., K00(0) is the
field element that resides in the register K00 during the first cycle).
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E.1 Algebraic description of the Rijndael cipher

The input to the Rijndael cipher can be regarded as a plain-text array of 4n elements and a key array of
4n elements, such that each element resides in F28 . Rijndael executes in n + 6 rounds, where each round
consists of the following four steps (except for the last round that skips Step 3):

1. SubBytes - Given byte x, compute y = Mx−1 + b, where M ∈ F28
8×8, b ∈ F28

8×1 are constants.

2. ShiftRows - For i ∈ {1, 2, 3, 4}, perform i cyclic shifts (rightwards) of the ith row of the plain-text
matrix.

3. MixColumns - For j ∈ 1, 2, . . . , n, multiply the jth column of the plain-text matrix by the following
constant circulant MDS matrix:

P0[j](t+1)

P1[j](t+1)

P2[j](t+1)

P3[j](t+1)

 =


g0 g1 1 1
1 g0 g1 1
1 1 g0 g1

g1 1 1 g0



P0[j](t)

P1[j](t)

P2[j](t)

P3[j](t)

.

Here, g0 is a specific field element of F28 with |〈g0〉| = 51, and g1 , g0 + 1 generates F∗28 . We note that
MixColumns also can be defined as computing the following linear combinations:

P0[j](t+1) = g0 · P0[j](t) + g1 · P1[j](t) + P2[j](t) + P3[j](t)

P1[j](t+1) = P0[j](t) + g0 · P1[j](t) + g1 · P2[j](t) + P3[j](t)

P2[j](t+1) = P0[j](t) + P1[j](t) + g0 · P2[j](t) + g1 · P3[j](t)

P3[j](t+1) = g1 · P0[j](t) + P1[j](t) + P2[j](t) + g0 · P3[j](t)

4. AddRoundKey:

• Key-Scheduler

– Using Rcon(t) , gt−1
0 , the first column in the new key-matrix is computed according to:


K00(t+1)

K10(t+1)

K20(t+1)

K30(t+1)

 =


SubBytes(K14(t)) + K00(t) + Rcon(t)

SubBytes(K24(t)) + K10(t)

SubBytes(K34(t)) + K20(t)

SubBytes(K04(t)) + K30(t)

.

– The other key elements are computed as: K[i,j](t+1) = K[i,j-1](t+1) + K[i,j](t).

• The new key is added by combining each byte of the current plain-text with the corresponding byte of
the key, using bitwise exclusive-OR.

E.2 Implementation technique of the Rijndael cipher

Per our complexity measures (cf. Section 2.2), we wish to construct an efficient representation of a hash
function by using algebraic constraints. However, the Rijndael cipher is computed over F28 with field
operations modulo the irreducible polynomial x8 +x4 +x3 +x+ 1, while the operations in our IOP system
are over F264 , defined using a different primitive polynomial. The properties of finite fields entail that for

72



any field Fpm and k|m, there exists a subfield Fpk . Therefore, there is an isomorphism between F28 and a
subfield of F264 .

We obtain such an isomorphism by mapping a primitive element of F264 to a primitive element of the
subfield with F ′ ∼= F28 , so that the mapping is implied by their powers. This is done by finding an element
of F264 with order 28 − 1.

We then transform all constants needed for Rijndael to their representation in F ′, and perform all the field
operations in F ′. Importantly, this enables an efficient constraint for the SubBytes step of Rijndael, since we
can represent the field inverse via a single multiplication in F ′. Specifically, by using an auxiliary element
z ∈ F ′, the constraint y = x−1 can be represented via y · z = x. By contrast, a naı̈ve implementation of the
inverse operation would require auxiliary elements {bi}7i=0, booleanity constraints ∪{bi(bi + 1)}7i=0, and a
polynomial of degree 8 with 256 summands.

The full SubBytes S-box is defined according to x→M ·x−1 +b, whereM ∈ F2
8×8 and b ∈ F2

8×1 are
constants. Adding the constant b is a simple field addition in F ′, whereas the multiplication by the constant
matrix M can be represented using a linear transformation T : F2n → F2n . Using algebraic properties,
we have that any linear transformation can be represented by a linearized polynomial [78, Chaper 3.4]. We
obtain the linearized polynomialC(x) =

∑7
i=0 cix

2i by finding coefficients {ci}7i=0 that satisfyC(ai) = bi,
where (a0, a1, . . . , a7) is a basis for the domain of T and (b0, b1, . . . , b7) is a basis for the range of T .

While the degree of C(x) is 128, the degree of our constraint polynomial for the entire Rijndael-160
computation is in fact only 8. At the high-level, the degree reduction is achieved via a decompositionC(x) =
C1(C2(C3(x))) with 3 auxiliary field elements, using an AIR such as {z′ + C3(x), z′′ + C2(z′), z = C1(z′′)}.
Per Section 2.3, this AIR is translated into a single constraint (z′ = C3(z))∧(z′′ = C2(z′))∧(z = C1(z′′)),
where the logical-AND is accomplished using the ALI protocol, i.e., random coefficients that are picked by
the verifier and sent to the prover in the next round of interaction (this round is used simultaneously for
zero-knowledge masking, cf. Appendix D.1). For better efficiency, the exact implementation uses repeated
squaring/quadrupling of the coefficients {ci}7i=0, rather than the polynomial composition C1(C2(C3(x))).

The ShiftRows operation is implemented together with SubBytes, by simply placing the results of the
SubBytes S-box in the appropriate registers for the next cycle (cf. Appendix E.3). The MixColumns opera-
tions is implemented in a single cycle, using the linear combination that we described above to perform field
additions and multiplications by the constant g0. The AddRoundKey operation is done at the same cycle
that we compute MixColumns, using the aforementioned efficient SubBytes S-box implementation.

E.3 State machine of the Rijndael cipher

The algebraic execution trace (cf. Section 2) of the Rijndael-160 hash function is shown in the following
table. We enforce boundary constraints on the first and last rows (i.e., cycle 0 and cycle T ).

P00 · · · P34(0) K00 · · · K34(0) INV1 · · · INV5(0) W11 · · · W53(0) F1(0) F2(0) RC(0) INVRC(0) STATE(0)

...
...

P00 · · · P34(t) K00 · · · K34(t) INV1 · · · INV5(t) W11 · · · W53(t) F1(t) F2(t) RC(t) INVRC(t) STATE(t)

P00 · · · P34(t+1) K00 · · · K34(t+1) INV1 · · · INV5(t+1) W11 · · · W53(t+1) F1(t+1) F2(t+1) RC(t+1) INVRC(t+1) STATE(t+1)

...
...

P00 · · · P34(T ) K00 · · · K34(T ) INV1 · · · INV5(T ) W11 · · · W53(T ) F1(T ) F2(T ) RC(T ) INVRC(T ) STATE(T )

73



(INV1(t)P00(t) + 1)(P00(t) ∧ INV1(t))∧
(W11(t) + INV14

(t)) ∧ (W12(t) + W114
(t)) ∧ (W13(t) + W124

(t))∧

(P00(t+1) + c0 · INV1(t) + c1 · INV12
(t) + c2 · W11(t) + c3 · W112

(t)

+ c4 · W12(t) + c5 · W122
(t) + c6 · W13(t) + c7 · W132

(t) + b)

Figure 9: Constraints polynomial for the Rijndael-160 SubBytes S-box.

The 20 registers


P00 P01 P02 P03 P04
P10 P11 P12 P13 P14
P20 P21 P22 P23 P24
P30 P31 P32 P33 P34

 contain the 160 bits of the plain-text.

The 20 registers


K00 K01 K02 K03 K04
K10 K11 K12 K13 K14
K20 K21 K22 K23 K24
K30 K31 K32 K33 K34

 contain the 160 bits of the key.

Each of these 40 registers is a field element of F264 that resides in the subfield F ′ ∼= F28 , and hence
contains only 8 bits of information. Per Appendix E.2, this is done to support a native inversion operation
for the SubBytes S-box. In each cycle, the registers INV1,INV2,INV3,INV4,INV5 are used primarily as
the auxiliary field elements that compute the inverses for SubBytes.

For i ∈ {1, . . . , 5}, the registers Wi1,Wi2,Wi3 store the repeated quadrupling that are used to compute
the powers of INVi: Wi1 = INVi4,Wi2 = Wi14 = INVi16,Wi3 = Wi24 = Wi116 = INVi64. Our
constraints will then also square these registers, for example Wi3 · Wi3 = INVi128.

The registers F1,F2 are inner flags that specify the current step in the Rijndael loop. Every round of
Rijndael takes 4 steps, and our algebraic constraints use the values of F1,F2 to enforce the requirements of
the current step.

The register RC is used to compute Rcon(i) in round i of the Rijndael loop. The register INVRC is used
for the inverse of RC, in order to tell when to stop the Rijndael iterations. The register STATE is an external
flag that specifies whether we compute the Rijndael cipher or some additional logic (i.e., STATE would be
unnecessary for a single invocation of Rijndael-160).

We provide an excerpt of the algebraic constraints of a single SubBytes S-box in Figure 9.
Overall, the width of the computation is 65, per the above description. The Rijndael-160 cipher requires

11 rounds where each round consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey (except for
the last round that lacks MixColumns). Each round takes 5 cycles in our implementation, hence an entire
invocation of Rijndael-160 takes 55 cycles. The prover needs to compute a total of 55 · 65 = 3575 field
elements for a single invocation of Rijndael-160.

E.4 From encryption to hash function: Davies-Meyer

The Rijndael-160 block cipher can be converted into a hash function by using the Davies-Meyer transforma-
tion: hash(B,K) = EK(B)⊕B, whereE is the Rijndael-160 cipher in our case. The resulting hash(B,K)
is collision-resistant under the assumption that for any key K the function EK(·) is an independent random
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permutation, see [73, Theorem 6.5]. Let us also note that constructions with additional overhead can give
a CRHF under milder assumptions (e.g., that EK(·) is a pseudo-random permutation), see for example [32,
Table 3].

To implement the Davies-Meyer construction, the execution trace (cf. Section 2.2) requires saving the
160 bits of B while computing the output of the Rijndael-160 cipher. As discussed, our implementation
expands B into 20 registers that contain elements of F264 . Since each of these 20 registers holds only 8 bits
of information, we can compress and save B in 3 registers that hold 64 bits of information.

The compression method is quite simple: by treating F264 as an extension field of F ′ ∼= F28 of degree 8,
we set a basis of the extension field and encode 8 registers of B into an element of F264 by using them as the
coefficients of the basis elements. It can in fact be proved that (1, g0, g

2
0, . . . , g

7
0) is such a basis. Thus, the

encoding is done as B0 =
∑7

k=0 pk · gk0 , where the values pk are taken from the registers Pij. We encode
B2,B3 in the same manner, except that for B3 the last 4 coefficients are set to 0.

In order to feed the output digest into the next Rijndael-160 invocation (see Appendix E.5), we require
the output to be in the “uncompressed” form that spans 20 registers. Thus, for i ∈ {0, 1, 2}, we decompress
Bi after the Rijndael-160 cipher computation, and then add the uncompressed values to the cipher’s output.
This is done by letting the prover supply 20 field element {pk}19

k=0 nondeterministically (with pk = 0 for
k ∈ {20, 21, 22, 23}), and enforcing the algebraic constraint Bi +

∑7
k=0 pk+8i · gk0 = 0 for i ∈ {0, 1, 2}.

However, this linear combination is unique only if the coefficients pk reside in F ′, and therefore the verifier
must also validate pk ∈ F ′ for k ∈ {0, . . . , 19}. This is achieved using Fermat’s little theorem, which states
that for any finite field F , ∀x ∈ F : x|F | = x. In our case the constraints are ∪{p256

k + pk = 0}19
k=0, and we

again reduce their total degree to 8 by using repeated quadrupling.
The state machine thus requires 3 additional registers for every cycle:

B0(0) B1(0) B2(0)

...
...

...

B0(t) B1(t) B2(t)

B0(t+1) B1(t+1) B2(t+1)

...
...

...

B0(T ) B1(T ) B2(T )

We show the crux of the algebraic constraints for compression and decompression in Figure 10.

Constraint polynomial for compression

B0(t+1) + P00(t) + x · P10(t) + x2 · P20(t) + x3 · P30(t)

+ x4 · P01(t) + x5 · P11(t) + x6 · P21(t) + x7 · P31(t)

Constraint polynomial for Fermat’s little theorem

(INV2(t) + INV14
(t)) ∧ (INV3(t) + INV24

(t)) ∧ (INV4(t) + INV34
(t)) ∧ (INV1(t) + INV44

(t))

Figure 10: Constraint polynomials for compression and decompression
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The compression requires one cycle before each computation of the Rijndael-160 cipher, and the decom-
pression requires two cycles afterwards. Thus, the number of cycles for the Rijndael-160 hash function is
58, the width is 68, and the total number of field elements that the prover needs to compute is 58 ·68 = 3944.

E.5 DNA profile match (DPM)

The high-level pseudo-code of the DNA profile match is given as Program 1. The database records are
assumed to reside in a hashchain of N elements, as illustrated in Figure 11. More precisely, the hashchain
is computed using the Merkle-Damgard construction with Rijndael-160 as the compression function. The
hash of the last element commits to the entire database, and is verified as a boundary constraint (line XV).
Notice that we harness the power of nondeterminism to supply the values of the chain elements during the
exhaustive search, which implies that for an arbitrary N the program can operate with only a small constant
number of auxiliary variables. Due to the collision resistance of the underlying compression function and
the Merkle-Damgard construction [83, 45], this use of nondeterminism is secure.

An element of the chain is a DNA profile according to the Combined DNA Index System (CODIS)
format; it is comprised of Short Tandem Repeat (STR) counts for 20 “core loci”; we use an 8 bit integer
to record a single STR value, and we encode the integer by a single element of F ′ (cf. Appendix E.2).
Since a single DNA profile requires 20 pairs of STR values (2 per loci), each record (profile) is stored in
two consecutive elements of the hashchain. Thus, a database D(n) of n profiles requires N = 2n chain
elements, and Program 1 consists of logic that alternates between odd and even elements.

Program 1 DNA profile match

Explicit inputs: n, cmt, cmp

Nondeterministic inputs: {VALi,j}i∈{1,2},j∈{1,2,...,20}, {Wi}i∈{0,1,2,...,N}
I: if cmp 6= hash160({VAL1,j}j∈{1,2,...,20}, {VAL2,j}j∈{1,2,...,20}) then return false end if

II: k ← 1, flag← 0, h← 0, T ← 0, N ← 2n
III: while k 6= gN do
IV: Parse (L1, R1, L2, R2, . . . , L10, R10) = Wj . j = logg k
V: if flag = 0 then

VI: T1 ← CheckPairs(VAL1,1,VAL1,2, L1, R1,VAL2,1,VAL2,2, L2, R2, . . . ,VAL10,1,VAL10,2, L10, R10)
VII: else

VIII: T2 ← CheckPairs(VAL11,1,VAL11,2, L1, R1,VAL12,1,VAL12,2, L2, R2, . . . ,VAL20,1,VAL20,2, L10, R10)
IX: T ← MatchingResult(T1, T2, T )
X: end if

XI: h← hash160(h,Wj)
XII: k ← g · k

XIII: flag← 1− flag
XIV: end while
XV: if cmt 6= h then return false else return T end if

To validate that the prover does not skip over some prefix of the chain in the exhaustive search, the total
number of hash invocations N is also checked by the verifier as a boundary constraint. We also note that
Program 1 increments its counter via a field multiplication with the generator g of F∗264 , thereby avoiding
integer arithmetics.

The register T stores the output, and is verified in the last cycle via a boundary constraint. The output
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W0

g0

W1

g1

W2

g2

W3

g3

WN−2

gN−2

WN−1

gN−1

Figure 11: Illustration of the data structure used in the DNA profile match program.

can be either 1) “perfect match”, meaning that an exact match between the input (i.e., the commitment cmp

that the prover decommits in ZK into 20 STR pairs) and a profile in the hashchain was found, or 2) “partial
match”, meaning that the exhaustive search found a profile in the hashchain such that ∀j ∈ {1, . . . , 20} at
least one STR value of its jth pair matches a value of the jth STR pair of the input, or 3) “no match”.

We provide high-level pseudocode of the perfect/partial match logic in Figures 12 and 13, and the
corresponding algebraic constraints in Figures 14 and 15. The InnerMatch(t) and Match(t) registers
of Figure 15 correspond to T1 and T2 in Figure 13, and Match(t+1) corresponds to T . In Figure 14, the
registers PAIR1(t) and PAIR2(t) are compared to the ith loci pair of the input. Each such comparison
relies on 5 auxiliary registers: INVTMP1(t), . . . ,INVTMP4(t) to compute field inverses, and NewFlag(t)

that represents the current inner matching (the register LastFlag(t) is derived from the previous iteration).
Since the prover (but not the verifier) knows the decommitment of cmp, the first invocation of Rijndael-

160 in Program 1 is executed with completely nondeterministic inputs (that occupy 40 registers), and the
output is constrained to be equal to cmp. Due to the ZK guarantee of our proof system, this implies semantic
security (by contrast, comparing the database records to 40 explicit constants that commit to STR strings
is not semantically secure because the same value may appear more than once, especially if Program 1 is
executed multiple times with the same committed database cmt). In each of the next invocations, those
nondeterministic values should be compared against the current database record (i.e., 20 registers that are
supplied nondeterministically by the prover). However, keeping the initial 40 values throughout the entire
execution of Program 1 is inefficient. Since each of those 40 registers contains only 8 bits of information,
we use the same technique as in Appendix E.4 to compress this data into 5 auxiliary registers.

L0(0) L1(0) L2(0) L3(0) L4(0)

...
...

...
...

...

L0(t) L1(t) L2(t) L3(t) L4(t)

L0(t+1) L1(t+1) L2(t+1) L3(t+1) L4(t+1)

...
...

...
...

...

L0(T ) L1(T ) L2(T ) L3(T ) L4(T )

After each invocation of Rijndael-160, we decompress these 5 registers in order to execute the compar-
ison logic (cf. Figures 12 to 15) for STR pairs with the newly supplied database record. Here too we must
verify the decompressed registers by using Fermat’s little theorem, and this requires two cycles as there are
not enough temporary registers to compute the repeated quadrupling in a single cycle.

Program 1 also requires an extra register for the counter k = gj , two registers for handling the perfec-
t/partial match constraints, three more registers that handle the possible states, and two additional auxiliary
registers. Overall, the width of the witness is 81, the number of cycles is 62, and the total number of field
elements that the prover computes is 81 · 62 ·N = 5022 ·N .
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CheckPairs(VAL1,1,VAL1,2, L1, R1,VAL2,1,VAL2,2, L2, R2, . . . ,VAL10,1,VAL10,2, L10, R10)

I: t← 2
II: for j ∈ {1, . . . , 10} do

III: if (VALj,1 = Lj) AND (VALj,2 = Rj) then Continue end if
IV: if (VALj,1 = Rj) AND (VALj,2 = Lj) then Continue end if
V: if (VALj,1 = Lj) OR (VALj,1 = Rj) OR (VALj,2 = Lj) OR (VALj,2 = Rj) then

VI: t← 1
VII: else

VIII: return 0
IX: end if
X: end for

XI: return t

Figure 12: CheckPairs subroutine of Program 1.

MatchingResult(T1, T2, T )

I: if T1 = T2 = 2 then return 2 end if
II: if (T1 = 0) OR (T2 = 0) then return T end if

III: if T = 0 then return 1 end if

Figure 13: MatchingResult subroutine of Program 1.
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(PAIR1(t) + valuesi,0) · (PAIR1(t) + valuesi,1) · [
(PAIR2(t) + valuesi,0) · (PAIR2(t) + valuesi,1) · NewFlag(t) ∧
LastFlag(t) · (NewFlag(t) + 1) · [

((PAIR2(t) + valuesi,0) · INVTMP1(t) + 1) ∧
((PAIR2(t) + valuesi,1) · INVTMP2(t) + 1)]] ∧

(PAIR2(t) + valuesi,0) · (PAIR2(t) + valuesi,1) · [
LastFlag(t) · (NewFlag(t) + 1) · [

((PAIR1(t) + valuesi,0) · INVTMP3(t) + 1) ∧
((PAIR1(t) + valuesi,1) · INVTMP4(t) + 1)]] ∧

(NewFlag(t) + LastFlag(t)) · [
((PAIR1(t) + valuesi,1) · INVTMP4(t) + 1) · ((PAIR2(t) + valuesi,0) · INVTMP1(t) + 1) ∧
((PAIR1(t) + valuesi,0) · INVTMP3(t) + 1) · ((PAIR2(t) + valuesi,1) · INVTMP2(t) + 1)] ∧

(LastFlag(t) + 1) · (LastFlag(t) +X) · NewFlag(t)

Figure 14: Algebraic constraints for one pair in the CheckPairs subroutine.

InnerMatch(t) · (InnerMatch(t) + 1) · (Match(t+1) +X)∧
Match(t) · (Match(t) + 1) · (Match(t+1) +X)∧
InnerMatch(t) · (InnerMatch(t) + 1) · (Match(t) +X) · (Match(t+1) + 1)∧
(InnerMatch(t) + 1) · (InnerMatch(t) +X) · (Match(t) + 1) · (Match(t) +X) · Match(t+1)

Figure 15: Algebraic constraints for the MatchingResult subroutine.
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F The AIR of the SHA2 hash function

The popular Secure Hash Algorithm 2 (SHA2) family [92] requires modular addition and cyclic shifts which
are not particularly “binary field friendly”. Nevertheless, we constructed a rather efficient AIR for it (first
row of Table 4), using field-specific constraints. A notable example is a constraint system that “extracts”
the ith bit from α ∈ F2t for any i < t; this system uses only a pair of constraints of degree 2 (notice the
number of constraints and their degree is indepenedent of t); we believe this bit-extraction constraint set will
be useful for other computations.

We provide here notation and several basic lemmas, which facilitate the bit extraction technique that our
efficient SHA-256 hash function implementation is based on.

The trace of an element y ∈ F2m is defined as Trm|2(y) ,
∑m−1

i=0 y2i .

Proposition 1. For any F2-linear function f : Fm2 → F2, there exists a field element αf ∈ F2m such that
∀y ∈ F2m : f(y) = Trm|2(αf · y).

Proposition 2. For every c ∈ F2m , the equation y2+y = c has solutions in F2m if and only if Trm|2(c) = 0.
Notice that if y0 is a solution of y(y + 1) = c then y0 + 1 is the other solution, since the field characteristic
is 2.

Definition 1. Let isZero(α,w, v) be the polynomial isZero(α,w, v) , w2 + w + α · v.

Lemma 1. The ith coefficient in the standard basis representation of y ∈ F2m is 0 if and only if there exists
w ∈ F2m such that 0 = isZero(αi, w, y) , where αi ∈ F2m is some field element that depends only on i.

Proof. The function fi : Fm2 → F2, fi(y) =

{
0, ith coefficient of y is 0
1, ith coefficient of y is 1

is F2-linear. It follows from

Proposition 1 and Proposition 2 that the required αi exists.
Furthermore, it is straightforward to pre-compute the constant αi by solving linear equations for the

trace of basis elements.

G Affine rearrangeable networks

G.1 Combinatorial representation of back-to-back De Bruijn routing

The following classical results regarding De Bruijn networks [47] can be found, e.g., in [77]. We use
Theorem G.3 below in the statement and proof of Theorem B.13. Therefore, we provide a self-contained
account of the needed results for the sake of completeness.

Definition G.1 (De Bruijn butterfly network). The De Bruijn butterfly network of dimension n is a directed

graph G = (V,E) over the vertices V
4
= {0, . . . , n} × {0, 1}n and edges

E
4
= {[(i, w), (i+ 1, csr(w))], [(i, w), (i+ 1, csr(w)⊕ 1)] | 0 ≤ i < n,w ∈ {0, 1}n}

where csr : {0, 1}n → {0, 1}n is the cyclic shift-right operation, and [x ⊕ 1] : {0, 1}n → {0, 1}n flips
the leftmost bit in x, and does not change any other bit. Let C be a set of colors. We say χ : V → C is a
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coloring of G if for every vertex v = (i, w) with i < n, there is a successor u of v (i.e. vu ∈ E) such that
χ(v) = χ(u).

Definition G.2 (back-to-back De Bruijn routing). A back-to-back De Bruijn routing of dimension n is a
pair of coloring functions χ̄ = (χ0, χ1) of the De Bruijn butterfly network of dimension n, such that for all
w ∈ {0, 1}n (i) χ0(n,w) = χ1(n,w), and (ii) for any w′ 6= w, χ0(0, w) 6= χ0(0, w′). In case |C| = 2n we
define the function induced by χ̄, πχ̄ : C→ C to be πχ̄(χ0(0, w)) = χ1(0, w).

Theorem G.3 (back-to-back De Bruijn is rearrangeable). For every set of colors C of size 2n, the set of
functions induced by back-to-back De Bruijn routings of dimension n and colors from C is exactly the set
of permutations over C. Moreover, given a permutation π : C → C, there is an algorithm constructing a
back-to-back De Bruijn routing χ̄ inducing π with time complexity O(n · 2n).

Proof. By Definition G.2, the function induced by a back-to-back routing must be a permutation, thus it
is sufficient to show an algorithm producing a back-to-back De Bruijn routing given a permutation π. The
algorithm is recursive and based on the Beneš network routing algorithm [28], and provided in Algorithm 3.
The algorithm as provided in Algorithm 3 does not reach the stated complexity, because it contains many
move operations, which can be easily eliminated using simple index translation.

Procedure 2 Auxiliary method for routing

Inputs: two vectors u, v of length 2n indexed by {0, 1}n with distinct entries, where u is a permutation of v
Output: vectors v0, v1, u0, u1 each of length 2n−1 indexed by {0, 1}n−1 with (i) each element of v is in v0

or v1, (ii) for every w ∈ {0, 1}n−1 and i, b ∈ {0, 1}, vbw = vix or ubw = uix only if x = w, and (iii) ui is a
permutation of vi.

I: function SPLIT(n, u, v)
II: initialize v0, v1, u0, u1 as partial mappings

III: while v0, v1, u0, u1 not yet well defined do
IV: if ∃w ∈ {0, 1}n−1,b, i ∈ {0, 1} such that vb·w ∈ ui but vb·w /∈ vi then
V: viw ← vb·w

VI: vīw ← vb̄·w
VII: continue

VIII: else if ∃w ∈ {0, 1}n−1,b, i ∈ {0, 1} such that ub·w ∈ vi but ub·w /∈ ui then
IX: uiw ← ub·w
X: uīw ← ub̄·w

XI: else
XII: pick arbitrary w ∈ {0, 1}n−1 such that v0·w /∈

{
v0
w, v

1
w

}
XIII: viw ← vi·w for i ∈ {0, 1}
XIV: end if
XV: end while

XVI: return v0, v1, u0, u1

XVII: end function

G.2 Affine embedding of back-to-back De Bruijn routing

Definition G.4 (Alegbraic De Bruijn). Let F be a field of characteristic 2 with primitive element g, and

fix some integer t. Let dlog (t + 1)e be a primitive binary polynomial of degree dlog (t + 1)e, Define H
4
=
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Program 3 Routing permutation over back-to-back De Bruijn

Inputs: two vectors u, v of length 2n indexed by {0, 1}n and distinct entries, where u is a permutation of v
Output: back-to-back De Bruijn routing χ̄, represented as a pair of 2n × (n + 1) tables, with induced
function satisfying πχ̄(vw) = uw for all w

I: function ROUTE DE BRUIJN(n, u, v)
II: . Recursion stopping condition

III: if n = 1 then
IV: if v0 = u0 then

V: return χ0 = χ1 =

[
v0 v0

v1 v1

]
VI: else

VII: return χ0 =

[
v0 v0

v1 v1

]
, χ1 =

[
v1 v0

v0 v1

]
VIII: end if

IX: end if
X: . General case

XI: (v0, v1, u0, u1)← SPLIT(n, u, v)
XII: χ̄0 ← ROUTE DE BRUIJN(n− 1, u0, v0)

XIII: χ̄1 ← ROUTE DE BRUIJN(n− 1, u1, v1)
XIV: for all w ∈ {0, 1}n do
XV: χ0(0, w)← vw

XVI: χ1(0, w)← uw
XVII: end for

XVIII: for all (i, w) ∈ [n]× {0, 1}n−1 do
XIX: represent w by w = x · y where |y| = i− 1
XX: χ0(i, x · 0 · y)← χ0

0(i− 1, w)
XXI: χ0(i, x · 1 · y)← χ1

0(i− 1, w)
XXII: χ1(i, x · 0 · y)← χ0

1(i− 1, w)
XXIII: χ1(i, x · 1 · y)← χ1

1(i− 1, w)
XXIV: end for
XXV: end function
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span
{

gi | 0 ≤ i < t
}

, and W
4
= span

{
gt+i | 0 ≤ i < dlog (t + 1)e

}
. A pair of mappings χ0, χ1 : H ⊕

W → F is an affine embedding of back-to-back De Bruijn of degree t if:

• for every x 6= x′ ∈ H , χ0(x+ gt+1) 6= χ0(x′ + gt+1)

• for every x ∈ H , χ0(x+ gt) = χ1(x+ gt)

• for every b ∈ {0, 1}, x =
∑
xig

i ∈ span
{

gi | 0 ≤ i < t
}

and every non zero y =
∑
yig

i ∈
span

{
gi | 0 ≤ i < dlog (t + 1)e

}
, denoting by z = x + gty, if

(
xt−1, ydlog(t+1)e−1

)
= (r, c) for

r, c ∈ {0, 1} then χb(z) equals to one of:

– χb (g · z + r · (gt + 1) + c · (gt · ξ))
– χb (g · z + r · (gt + 1) + c · (gt · ξ) + 1)

Let C be the image of χ over H . The function induced by χ0, χ1 is a mapping π : C → F mapping defined
by χ0(x+ gt+1) 7→ χ1(x+ gt+1) for every x ∈ H .

Theorem G.5 (Affine permutation). The set of all mappings induced be affine embeddings of back-to-back
De Bruijn of degree t is exactly the set of all permutations over 2t elements of F.
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