
DXswap Audit No. 1

Oct, 2020

Contents

1 Introduction 2
1.1 Scope of Work . 2
1.2 Source Files . 2
1.3 License and Disclaimer of Warranty 3

2 Critical Defects 4
2.1 DXswapPair: Zero Fee Skips Invariant 4

3 Moderate Defects 5
3.1 Multiple Solidity Versions . 5
3.2 Loop Induction Variable Overflow 5

4 Minor Defects 6
4.1 Y2038 Timestamp Overflow . 6
4.2 Miner Price Oracle Manipulation . 6

5 Other Notes 7

1

Chapter 1

Introduction

1.1 Scope of Work
This code review was prepared by Sunfish Technology, LLC at the request of members
of dxDAO, an organization governed by a smart contract on the Ethereum blockchain.
The code covered by this review (see section 1.2) is a fork of an existing "decentral-
ized exchange" product called UniswapV2. This audit covers only the changes to the
upstream source code, not the entirety of the source.

1.2 Source Files
This audit covers code from public GitHub repositories located at https://github.
com/levelkdev/dxswap-core and https://github.com/levelkdev/dxswap-periphery,
both of which contain the complete git history of the upstream source code. Since this
review specifically covers the changes to upstream code, the commit ranges that were
used for producing diffs for review are as follows:

dxswap-core 8160750...ca021f4
dxswap-periphery a86e696...44cf11e

Within those commit ranges, only the changes to the following files were reviewed:

• dxswap-core/contracts/DXswapERC20.sol

• dxswap-core/contracts/DXswapPair.sol

• dxswap-core/contracts/DXswapFactory.sol

• dxswap-core/contracts/DXswapDeployer.sol

• dxswap-periphery/contracts/libraries/DXswapLibrary.sol

• dxswap-periphery/contracts/DXswapRouter.sol

2

https://github.com/levelkdev/dxswap-core
https://github.com/levelkdev/dxswap-core
https://github.com/levelkdev/dxswap-periphery

This review was conducted under the optimistic assumption that all of the support-
ing software infrastructure necessary for the deployment and operation of the reviewed
code works as intended. There may be critical defects in code outside of the scope of
this review that could render deployed smart contracts inoperable or exploitable.

1.3 License and Disclaimer of Warranty
This source code review is not an endorsement of the code or its suitability for any
legal/regulatory regime, and it is not intended as a definitive or exhaustive list of de-
fects. This document is provided expressly for the benefit of dxDAO developers and
only under the following terms:

THIS REVIEW IS PROVIDED BY SUNFISH TECHNOLOGY, LLC. “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
SUNFISH TECHNOLOGY, LLC. OR ITS OWNERS OR EMPLOYEES BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROF-
ITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS REPORT OR REVIEWED SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

3

Chapter 2

Critical Defects

Issues discussed in this sections are defects that lead to the code to misbehave in ways
that are directly exploitable and have severe consequences like loss of funds.

2.1 DXswapPair: Zero Fee Skips Invariant
The following code in DXswapPair.swap(), which needs to be executed in order to
enforce the "constant-product invariant" for swaps, does not execute when swapFee is
zero:

if (swapFee > 0) {
uint balance0Adjusted = balance0.mul(10000).sub(amount0In.mul(swapFee));
uint balance1Adjusted = balance1.mul(10000).sub(amount1In.mul(swapFee));
require(balance0Adjusted.mul(balance1Adjusted) >=

uint(_reserve0).mul(_reserve1).mul(10000**2), 'DXswapPair: K');
}

Consequently, a proposal that sets swapFee to zero will inadvertently allow any
swap for any quantity of inputs and outputs to succeed. In other words, an attacker
can drain all of the reserve tokens at once when the swap fee is zero. The purpose of
the require statement within this block is not just to ensure that the swapFee is paid;
it also asserts the trading invariant for swaps.

Removing the conditional block around these three lines of code remediates this
issue.

4

Chapter 3

Moderate Defects

Issues discussed in this section are code defects that may lead to unintended deviations
in behavior. It may be possible to chain multiple moderate defects into a working
exploit.

3.1 Multiple Solidity Versions
The Babylonian and FixedPoint libraries in dxswap-periphery want solidity ver-
sion 0.4, but the AddressStringUtil and SafeERC20Namer libraries want solidity
0.5. Since the rest of the dxswap-periphery code is compiled with solidity 0.5,
the Babylonian and FixedPoint libraries should be changed to use that solidity ver-
sion, and they should be audited for behavior changes caused by the solidity version
change. (The solidity compiler is not strictly backwards-compatible across minor ver-
sion bumps like 0.4 => 0.5.)

Note that the code in question here is not within the scope of this review.

3.2 Loop Induction Variable Overflow
The loops in DXswapDeployer.sol on lines 31 and 54 use an induction variable of
type uint8 with arbitrary loop bounds, which makes these loop bounds trivial to inten-
tionally overflow. The particular context of the code in question makes these overflows
uninteresting from an exploitation perspective, but they are still present nonetheless.

Using integer types other than uint or uint256 in solidity is usually unnecessary.
Counterintuitively, integer types narrower than 256 bits are more expensive from a gas
utilization perspective, as they require that the compiler generate appropriate masking
operations. (The EVM does not support native operations on scalars narrower than 256
bits.)

5

Chapter 4

Minor Defects

Issues discussed in this sections are subjective code defects that affect readability, reli-
ability, or performance.

4.1 Y2038 Timestamp Overflow
The price accumulator mechanism in DXswapPair uses block timestamps modulo 232.
Consequently, this code cannot be expected to work once Unix time exceeds 232 sec-
onds (in the year 2038) or if the Ethereum blockchain makes changes to the semantics
of block.timestamp in future forks.

4.2 Miner Price Oracle Manipulation
The price oracle mechanism described in the UniswapV2 whitepaper is not as robust
to manipulation as intended.

The authors of the whitepaper correctly determine that the price oracle can be ma-
nipulated by anyone who is able to control all of the transactions associated with a par-
ticular swap contract for a whole block. What they do not address is that it is perfectly
feasible for a miner to refuse to mine transactions associated with a particular swap
contract without absorbing serious economic costs during periods where transaction
volume is high. When there is significant demand for the execution of Ethereum trans-
actions, miners have a tremendous amount of latitude when it comes to determining
which transactions to execute, as they can easily fill a block with high-transaction-fee
transactions. (They can censor transactions when demand is low, too, but then it is
clear that they would have to forego some transaction fee revenue.)

As a consequence, it may be possible for one miner (with lots of hash-power) to
cheaply manipulate the price oracle mechanism for short periods of time.

6

Chapter 5

Other Notes

• The current git state of levelk/dxswap-core and levelk/dxswap-periphery
will not make it easy to re-apply changes over a different upstream base commit.
Ideally, the set of patches that dxDAO maintains on top of the Uniswap upstream
code should be easy to rebase on top of upstream bugfixes. Presently there are
dozens of commits on top of the upstream code, plus merge commits, which
would make a git rebase rather cumbersome. Moreover, rebasing the current
changes will just become more laborious over time.

Consider rebasing all of the current changes over the UniswapV2 v1.0.1 HEAD
and squashing all of the changes into a small (half-dozen or fewer) number of
patches that can be applied and/or fixed up independently. Also, consider hinting
to git that some "new" files are actually re-named files from upstream (via ap-
propriate invocation of git mv). The current history contains non-minimal diffs
in part because the developers forgot to inform git about some file renaming.
Additionally, the developers made a number of superficial naming changes to
internal functions, interfaces, and contracts that are not user-visible but nonethe-
less contribute substantially to the maintenance burden of this patch set. Con-
sider reverting any changes that aren’t strictly necessary to achieve the desired
functionality.

• The UniswapV2 "constant-product" price mechanism creates an incentive for
swaps to be broken up into small pieces so that slippage gets arbitraged away.
Consequently, we can expect that users will spend more on gas for swaps than
they would otherwise. (Note that constant-product pricing makes slippage non-
linear: larger trades get exponentially worse price execution.)

• The dxswap-core and dxswap-periphery repositories contain a number of
generated build artifacts. It is generally best practice not to check in any build
artifacts to version control, for two reasons: First, changes to these build arti-
facts ruins the usefulness of tools like git log -p, and second, it will conceal
whether or not the artifacts are actually reproducible across developers using dif-
ferent build environments. Consider setting up a continuous integration environ-

7

ment that performs "porcelain" builds of the source code and archives them, and
have developers routinely test whether or not they can reporduce those artifacts.

8

	1 Introduction
	1.1 Scope of Work
	1.2 Source Files
	1.3 License and Disclaimer of Warranty

	2 Critical Defects
	2.1 DXswapPair: Zero Fee Skips Invariant

	3 Moderate Defects
	3.1 Multiple Solidity Versions
	3.2 Loop Induction Variable Overflow

	4 Minor Defects
	4.1 Y2038 Timestamp Overflow
	4.2 Miner Price Oracle Manipulation

	5 Other Notes

